Setting Nutrient Limits Based on Antidegradation Ashley Ward, P.E. Assistant Chief Division of Surface Water Ohio EPA ## **Ohio Background** ### Ohio Background - Ohio does not have numeric criteria for nutrients - Monthly average phosphorus limit of 1.0 mg/L for POTWs in the Lake Erie Basin - Variety of different phosphorus limits throughout the state, typically ranging from 0.5 mg/L – 1.0 mg/L ### **Antidegradation Background** - Federal regulations - "Existing uses, which are determined using the use designations defined in rule 3745- 1-07 of the Administrative Code, and the level of water quality necessary to protect existing uses, shall be maintained and protected." | TP Conc. (mg/l) | DIN Concentration (mg/l) | | | | | |------------------|--|---|--|--|--| | | <0.44 | 0.44 < 1.10 | 1.10 < 3.60 | 3.60 < .70 | ≥6.70 | | <0.040 | background levels typical of least disturbed conditions (21.2% of observations) | levels typical of developed
lands; little or no risk to
beneficial uses (8.0% of
observations) | levels typical of modestly
enriched condition; low risk
to beneficial use if allied
responses are within normal
ranges; high phosphorus
uptake (5.2% of
observations) | levels typical or enriched condition in phosphorus limited systems; moderate risk to beneficial use if allied responses are elevated; high phosphorus uptake (0.7% of observations) | characteristic of tile-drained lands;
otherwise atypical condition with
moderate risk to beneficial use if
allied responses are elevated; high
phosphorus uptake (0.2% of
observations) | | 0.040-
<0.080 | levels typical of developed lands; little or no risk to beneficial uses (6.9% of observations) | levels typical of developed
lands; little or no risk to
beneficial uses if allied
responses are normal
(8.6% of observations) | levels typical of working
landscapes; low risk to
beneficial use if allied
responses are within normal
ranges (6.5% of
observations) | levels typical of enriched condition in phosphorus limited systems; moderate risk to beneficial use if allied responses are elevated; high phosphorus uptake (0.9% of observations) | characteristic of tile-drained lands;
moderate risk to beneficial use if
allied responses are elevated (0.1%
of observations) | | 0.080-
<0.131 | levels typical of modestly
enriched condition with high
nitrogen uptake; low risk to
beneficial use if allied
responses are within normal
ranges (3.0% of observations) | levels typical of working landscapes; low risk to beneficial use if allied responses are within normal ranges (6.0% of observations) | levels typical of streams with
a significant effluent
fraction; low risk to
beneficial use if allied
responses are within normal
ranges; pre-uptake condition
(6.8% of observations) | characteristic of tile-drained lands;
moderate risk to beneficial use if
allied responses are elevated;
increased risk with poor habitat –
OR – large rivers with significant
effluent fraction (0.9% of
observations) | characteristic of tile-drained lands;
moderate risk to beneficial use if
allied responses are elevated (0.3%
of observations) | | 0.131-
<0.400 | levels typical of enriched condition with high nitrogen uptake; elevated risk to beneficial use (2.7% of observations) | levels typical of enriched
condition with high
nitrogen uptake; elevated
risk to beneficial use (4.5%
of observations) | levels typical of streams with a significant effluent fraction; moderate risk to beneficial use if allied responses are within normal ranges; pre-uptake condition (10.6% of observations) | enriched condition; generally high
risk to beneficial uses; often co-
occurring with multiple stressors;
increased risk with poor habitat
(1.7% of observations) | enriched condition; generally high
risk to beneficial uses; often co-
occurring with multiple stressors
(0.6% of observations) | | ≥0.400 | high nitrogen uptake; atypical condition (0.2% of observations) | high nitrogen uptake;
atypical condition (0.6% of
observations); | typical of effluent
dominated rivers; high risk
(1.6% of observations) | nriched condition; high risk to
beneficial uses; (1.2% of
observations) | enriched condition; high risk to
beneficial uses; often co-occurring
with multiple stressors (1.0% of
observations) | ### **Phosphorus and DIN Limits** - Calculate a WLA using 0.4 mg/L and 3.6 mg/L as targets - Use D80 flow - Take into account long term averaging - Set permit limit to prevent loss of use **Example: Racoon Creek WWTP**