Iowa Point Source Nutrient Reduction Metrics: What We've Learned

May 3, 2023

When water quality was worse:

There were times when the flow [in the Missouri *River] along the west* shore was literally red with blood. Great mats of congealed grease floated downstream for miles. Hair and entrails collected in scummy islands.

Packing house waste being discharged to the Floyd River in Sioux City, August 1952.

Des Moines Register, November 19, 1969 Sewage Pre-Treatment Plant In Omaha Ends Bloody River

By a Staff Writer OMAHA, NEB. - One of the worst pollution situations in the

entire nation has been all but flow of packinghouse wastes eliminated here with completion of a sewage pre-treat- 13 years ago - Chloupek said. ment plant for the huge Omaha The river still is far from livestock industry.

packing industry have been among the largest in the world the Missouri River.

There were umes when the flow along the west shore was literally red with blood. Great mats of congealed grease floated downstream for miles. Hair and entrails collected in scummy islands.

The worst

"People who know have told me this was absolutely the worst pollution they have seen anywhere in the US.," says Carl Chloupek, area representative for the Federal Water Pollution Control Commission in Lincoln, Neb.

Now the bloody flow into the river has stopped, thanks to the unique pre-treatment plant which began its shakedown last week. The \$5.5 million plant is expected to go into full operation later this month.

Federal efforts to end the into the river began in 1956 clean, he said, but Omaha This city's stockyards and passed a "real milestone" last week.

The City of Omaha still gives only primary treatment to its since the mid-1950s. Since that wastes, but has agreed in printime and before, all the waste ciple to construct secondary fa-- millions of gallons a day - cilities, Chloupek said. No timehas been dumped untreated into table has been established, he added.

> Primary treatment removes scwage solids, about 35 per cent of the pollutants. Secondary treatment removes about 90 per cent.

Omaha's primary treatment lant went into operation only our years ago. Before that, i oo dumped all its wastes unreated into the river

As it was, Chloupek said, the city plant has been operating at only half of its capacity because, without pre-treatment, it was unable to handle the packinghouse wastes. So half of the for retirement of \$5.5 million in years waiting for the packers of the plant and its operation. to pre-treat their wastes.

This half was placed in oper- built by the Carver-Greenfield ation for the first time last Corp, Kirkham, Michael & Assoweek, Chloupek said, when it ciates were the consultants.

began handling the effluent from the pre-treatment plant.

Omaha's primary treatment plant went into operation only four years ago [~1965]. Before that, it too dumped all its wastes untreated into the [Missouri] river.

plant has been idle for four bonds sold for the construction

The plant was designed and

Who?

Focus on:

- ~100 major municipal wastewater treatment plants
- ~50 industries with biological treatment for process waste
- Total of ~150 ----- (actual 161)

Goal:

- To achieve BNR equivalent nutrient removal at each plant
 - TN removal ~66%
 - TP removal ~75%

Cost and Affordability

E	stimated Co	osts for BNR I	mprovement	s for Mund	ipal M	lajors (Ta	arget	Effluent	TN = 1	LO mg/L, Ta	rget Effluer	nt TP = 1 mg/L)	
Treatment Type	# of Facilities	Combined Design AWW Flow (MGD)	Combined Annual Average Flow ¹ (MGD)	Total Capi Cost (\$M)	Ti tal O (\$	otal Anr &M Cos \$M)	nual st	Total Pre Worth C (\$M) ²	esent ost	Total Annual Cost (\$M)	\$/1,000 gallons Treated ³	Weighted Monthly Cost/Household ⁴	Weighted % of MHI ⁴
Activated Sludge	56	533	355		348		25		686	51	0.39	/./5	0.18%
Fixed Film	37	101	6/		430		/		524	39	1.59	25.83	0.73%
Aerated Lagoon	9	11	8		110		3		147	11	3.92	01.08	2.13%
Totals	102	645	430		887		35		1,358	101	0.64	11.855	0.29%5
Estimated Costs for BNR Improvements for all Industries with Biological Treatment (Target Effluent TN = 10 mg/L, Target Effluent TP = 1 mg/L)						Total Present	Worth						
Treatment Type	# of Facilitie	Combin Design Flow (MGD)	ed Total Capital Cost (\$	To 08 M) (\$1	tal Ann kM Cos M)	nual I st N	Total Prese Wortl (\$M) ¹	nt h Cost	Tota Ann (\$M	al ual Cost)	\$/1,000 gallons Treated ²	= 1.53 (\$B)	
Activated Sludge	2	0 4	4.2	29.3		2.0		56.1		4.2	0.26	Total Capital C	ost
Fixed Film		1	0.6	2.7	(0.04		3.3		0.2	1.06		.050
Aerated Lagoon		7	5.8	86.5	2	2.20		116.0		8.6	4.05	= 1.00 (\$B)	
Totals	2	8 5	0.7 1	18.5		4.2		175.5		13.1	0.71		

NITROGEN MAKEUP IN IOWA

Source: Iowa Nutrient Reduction Strategy and Libra, R.D., Wolter, C.F., and Langel, R.J. 2004. Nitrogen and Phosphorus Budgets for Iowa and Iowa Watersheds. Iowa Geological Survey Technical Information Series 47, 43p

Point Source – Nonpoint Source Collaboration

- Nonpoint sources
 - 41% reduction of statewide N load
 - 29% reduction of statewide P load
- Point sources
 - 4% reduction of statewide N load
 - 16% reduction of statewide P load
- Combined 45% N and P reductions

Normal Permitting Process

Nutrient Strategy Permitting Process

Time frame

Annual Progress of Issuing Point Source Facility Permits Note: Annual tracking cycle changed from fiscal year to calendar year in 2018

Iowa Point Source Monitoring

Count of Facilities with Total Nitrogen and Total Phosphorus Data Each Year

Phosphorus Municipal Commitments From Feasibility Studies

Municipal and Industrial Total Nitrogen -Amendments to Construct, Construction Completion & Permit Limit Addition

2020 Calendar Year Data

	Estimate (Target)	POTWs (w/ estimates)	Industry		
Total Nitrogen (average)	-				
number of facilities		108	27		
raw waste (mg/L)	25	35.5 (range 14.3 – 115.0)	123.7 (range 7.5 - 686.5)		
final effluent (mg/L)	10	17.2 (range 3.0 – 70.3)	22.7 (range 0.4 - 138.6)		
% removal (lbs)	66%	50.6% (range -5.5% - 91.8%)	71.5% (range -0.4% - 97.8%)		
Total Phosphorus (average)					
number of facilities		108	33		
raw waste (mg/L)	4	5.6 (range 1.8 – 17.7)	23.7 (range 0.4 - 93.4)		
final effluent (mg/L)	1	3.2 (range 0.2 – 13.5)	12.0 (range 0.1 - 89.2)		
% removal	75%	43.6% (range -4.0% - 93.7%)	39.6% (range -455.3% - 96.8%)		
Annual Load Reduction (Calendar Year 2020)					
Total nitrogen (tons)	-	9,016	3,414		
Total phosphorus (tons)	-	1,292	772		

Point Source Facilities Meeting Reduction Targets by Year

IOWA DEPARTMENT OF NATURAL RESOURCES Kayla Lyon, Director

Design Flow Considerations

Total Municipal Design Flow Under the Strategy:

655.5 MGD

FACILITY NAME	TREATMENT TYPE	Design Flow (MGD)	% of Overall Municipal Flow
DES MOINES	ACTIVATED SLUDGE	134	20.4%
CEDAR RAPIDS	ACTIVATED SLUDGE	56	8.54%
WATERLOO	ACTIVATED SLUDGE	34.8	5.31%
DAVENPORT	ACTIVATED SLUDGE	26	3.97%
IOWA CITY	ACTIVATED SLUDGE	24.2	3.69%
SIOUX CITY	ACTIVATED SLUDGE	17.6	2.68%
FORT DODGE	ACTIVATED SLUDGE	15	2.29%
MASON CITY	ACTIVATED SLUDGE	14.9	2.27%
COUNCIL BLUFFS	TRICKLING FILTER	14	2.14%
DUBUQUE	ACTIVATED SLUDGE	13.47	2.05%

Top 10 - 2021 Nitrogen Removal

1. ATLANTIC	95.7%
2. NORTH LIBERTY	92.3%
3. CLEAR LAKE SD	91.4%
4. ANAMOSA	88.6%
5. DYERSVILLE	86.0%
6. OELWEIN	85.6%
7. CORALVILLE	85.4%
8. WAPELLO	84.7%
9. WEST LIBERTY	84.0%
10. GRUNDY CENTER	81.4%

Met goals, outside top 10: Eagle Grove #22, Fort Dodge #26

Top 10 - 2021 Phosphorus Removal

1. GRUNDY CENTER	94.6%
2. ATLANTIC	89.5%
3. EAGLE GROVE	87.6%
4. CARROLL	83.4%
5. CASCADE	82.2%
6. WEST LIBERTY	82.0%
7. NORTH LIBERTY	80.4%
8. DYERSVILLE	79.3%
9. SIOUX CITY	79.1%
10. CLINTON	79.0%

Iowa Point Source Annual Nutrient Loads

Major POTWs, Minor Domestic, and Industrial w/BTP (estimates included)

What Happened Between 2019 and 2020?

- Below is a closer look at the loadings from 2013 and 2018 to 2021
- The TN load dropped by 11% between 2019 and 2020, and the TP load dropped by 17%
- The loading increased again in 2021, but this drop is surprising

Iowa Point Source Annual Nutrient Loads, 2013-2021

Major POTWs, Minor Domestic, and Industrial w/BTP (estimates included)

Rainfall Comparison Charts

- Beginning in 2017, the adjusted raw loading data corresponds well with Iowa's annual average rainfall totals
- Data from the two largest facilities in Iowa were added in 2016 (Des Moines) and in 2017 (Cedar Rapids)

Things To Be Excited About!!!

Point Source

- Nutrient Reduction Exchange Watershed Investments
- Optimization Efforts
- More BNR facilities coming online, funding

Nonpoint Source

- Funding (SF512, RCPP, WQI, Gulf of Mexico, etc)
- Innovations in Delivery (Batch and Build)
- Iowa Nutrient Research Center

What questions do you have?

Adam Schnieders adam.schnieders@dnr.iowa.gov 515.238.0551

