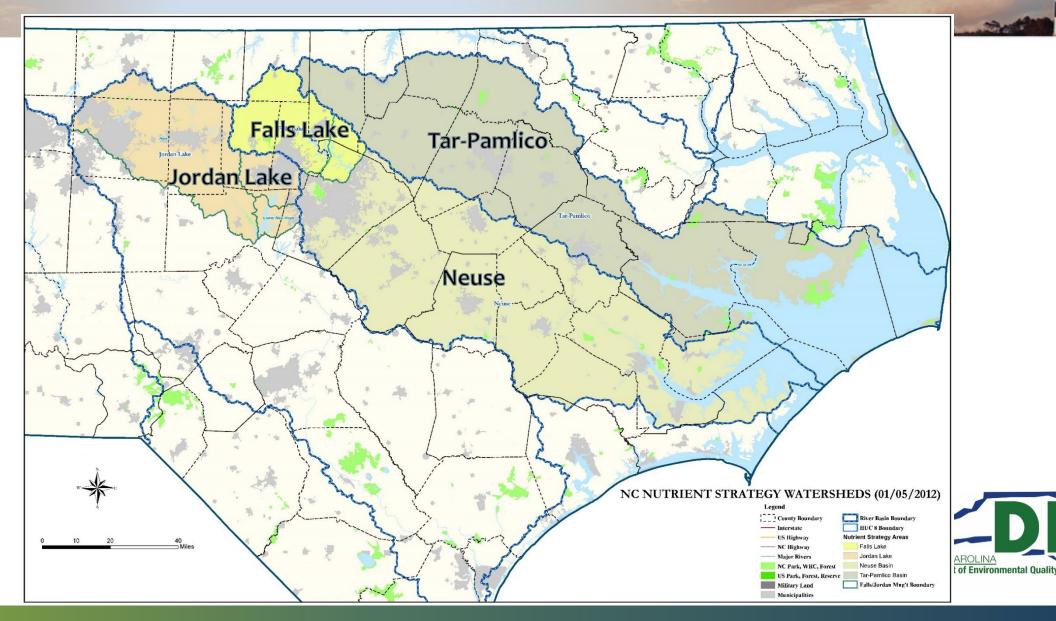


Baselines and Nonpoint Source Credits in North Carolina Nutrient Strategies

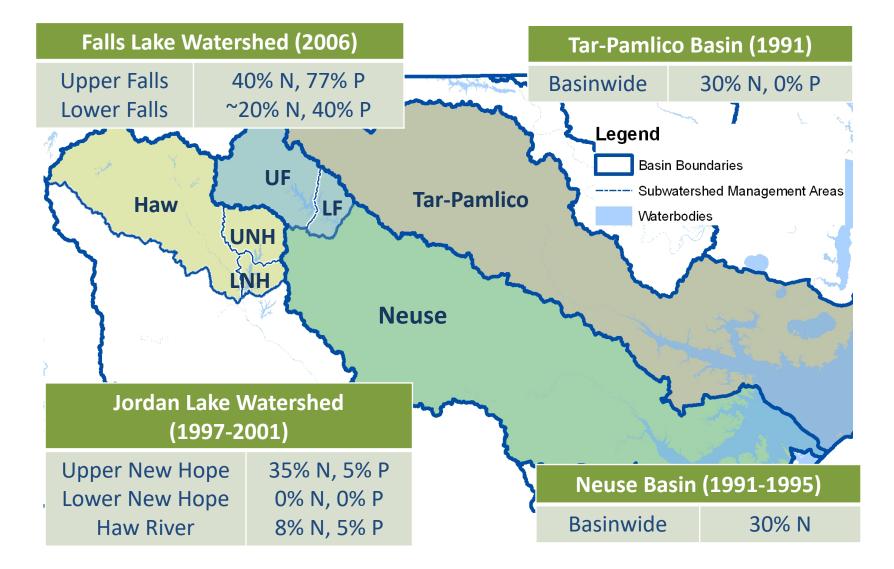
October 2020 ACWA Nutrients Permitting Workshop Rich Gannon, NC DWR Nonpoint Source Planning Branch


NC's Nutrient Regulatory Foundation

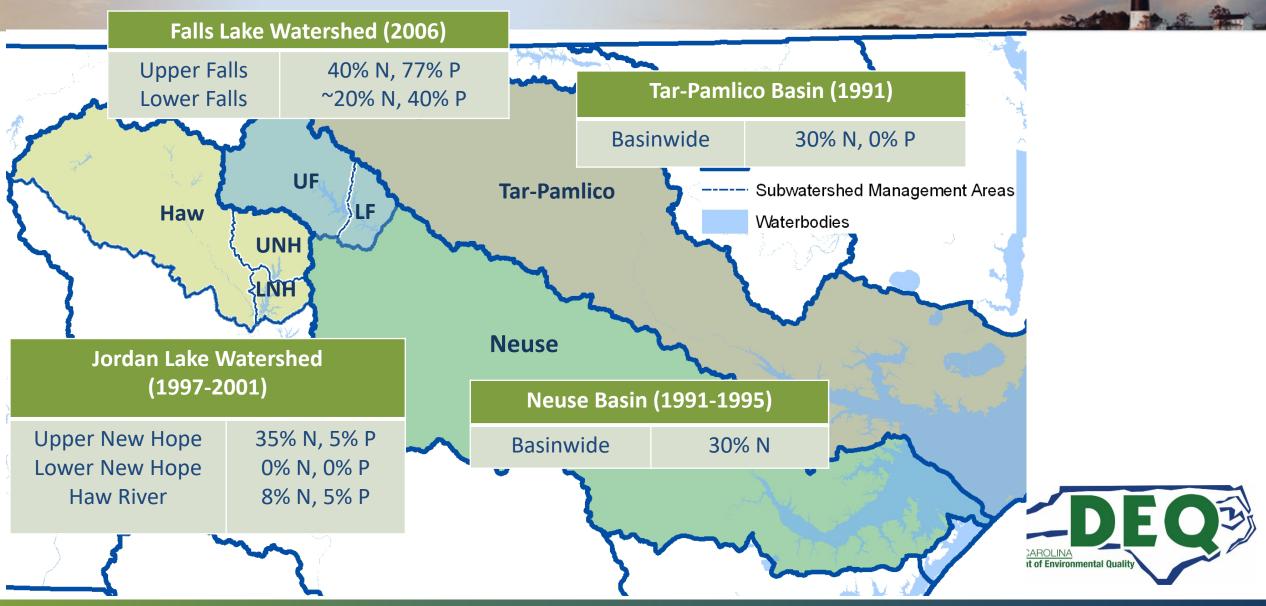
- Federal + state authorities
- 1978 Chlorophyll a criterion: 40 µg/L (10/90)
 - No numeric N or P criteria (yet)
- 1979 NSW supplemental classification
- 1997 Clean Water Responsibility Act EMC shall:
 - Set reduction goals for nutrient-impaired waters,
 - Establish plans with "fair, reasonable and proportionate" reductions from point and nonpoint sources
 - Adopt rules for above, and to implement TMDLs
- Modeling to set point/nonpoint source goals for N, P and guide wasteload allocations for dischargers

Department of Environmental Quality

'Modern' Nutrient Strategy Watersheds



Rule Elements of Modern Nutrient Strategies

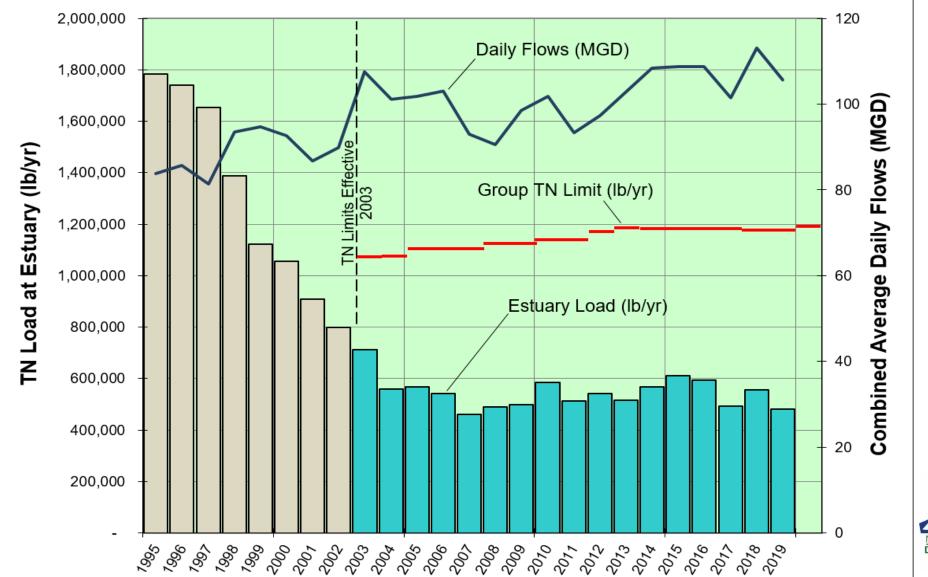

- Wastewater
- Agriculture
- Riparian buffer protection
- Stormwater
 - New development
 - Existing development (Jordan, Falls)
- Nutrient trading

Nutrient Strategy Reduction Goals

Nutrient Strategy Reduction Goals

Wastewater Rules

• Individual TN, TP mass limits based on:


WLA = \sum equivalent [TN] * permitted flow * delivery factor

- Watershed group permits, compliance associations
- Trading options:
 - Allocation purchase all facilities
 - NPS offset purchase new/expanding facilities
- Trades done in delivered loads
- Trades may not create hot spots

Aggregate Annual Estuary TN Loads, Neuse Basin Dischargers' Association

Stormwater Rules

- New Development
 - Locally implemented
 - Developers meet nutrient rate targets
 - Onsite SCMs
 - Partial option purchase offsets
 - Exclusive offset practice to date rural riparian buffer restoration @ 76 lb N/ac
- Existing development (Jordan, Falls)
 - Local governments regulated
 - Reduce nutrient loading based on existing developed lands
 - DWR administers

New Development Stormwater Nutrient SCMs (As Retrofits, Candidate PS:NPS Offset Practices)

Previously Available

- Bioretention w/ or w/o IWS
- Infiltration
- Permeable pavement 3
- Wet pond
- Stormwater wetland
- Sand filter 2
- Rainwater Harvesting
- Green roof
- DIS
- LS-FS
- Grass Swale
- Dry pond

Department of Environmental Quality

Added with SNAP Tool

- Bioretention variants
- Permeable pavement variants
- Wet pond floating wetlands
- LS-FS w/Virophos
- Grass swale dry or wet
- StormFilter ®
- \bullet Silva Cell ${\ensuremath{\mathbb R}}$ w/ or w/o IWS
- Over/undersizing: all SCMs except green roof, grass swale, StormFilter

Existing Development Practices Completed or Under Development (Candidate PS:NPS Offset Practices)

Available

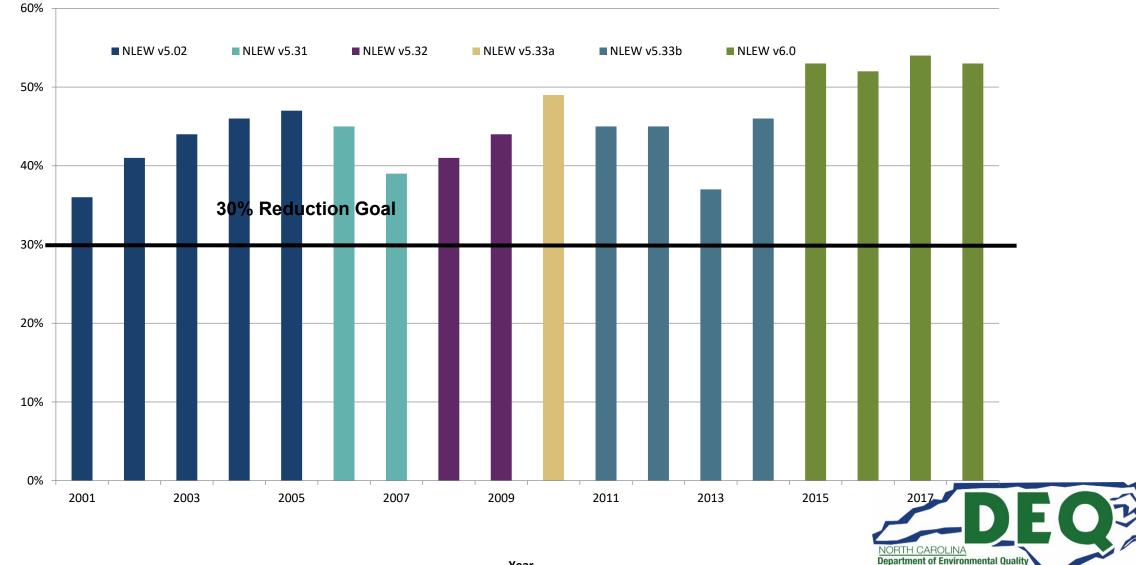
- Soil amendment (ED)
- Illicit Discharge Elimination (ww)
- Cattle Exclusion (agriculture)
- Streetsweeping / Stormdrain Cleanout (ED)
- Remedy discharging sand filter (ww)

In Progress - Falls ED Model

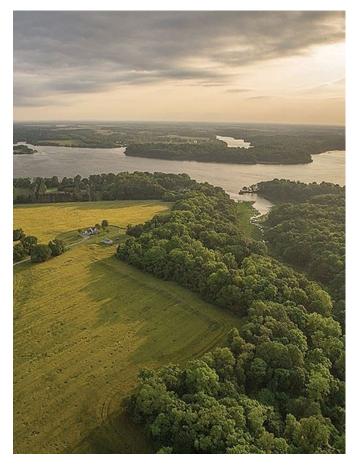
- Developed land buffer restoration (ED)
- Built land reforestation (ED)
- WW Regionalization / Overtreatment
- Programmatic Septic Malfunction Reduction

2021 or Later

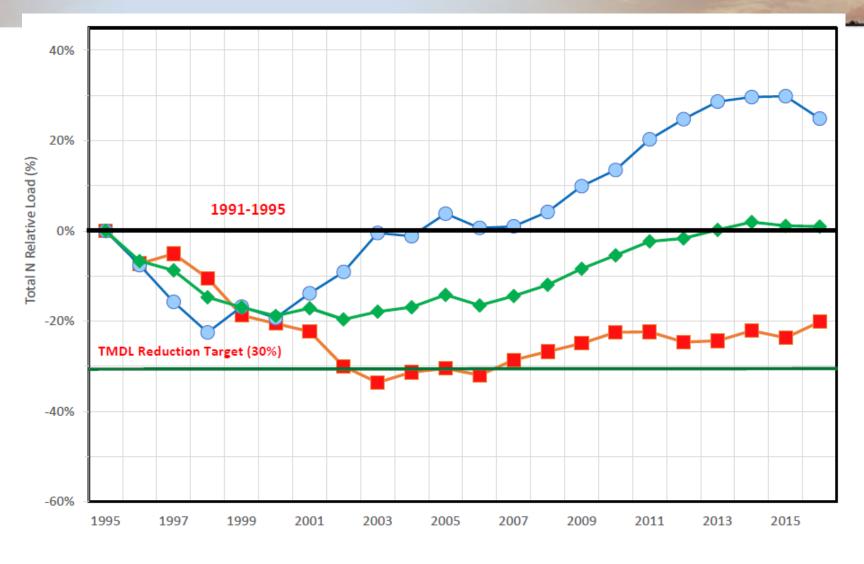
- Revise Rural Buffer Restoration
- Stream Restoration:
 - Stem Sediment Loss
 - Floodplain Reconnect
- Bioswale
- Cropland Conversion to Trees
- Algal Turf Scrubber
- RSC


Department of Environmental Quality

- Collective annual compliance (not individual)
 - Meet strategy reduction percentages
- Cropland annual nutrient accounting (+ pasture in Jordan, Falls)
 - Nitrogen: Edge-of-field N loss reduction estimates*, countyscale, aggregated for basin
 - * Not comparable to other sectors' load reduction estimates
 - Reductions: BMPs, fertilizer decreases, crop shifts, ag land lost
 - Phosphorus qualitative risk evaluation



Annual Cropland TN Loss Reductions, Neuse River Basin


Riparian Buffer Rules

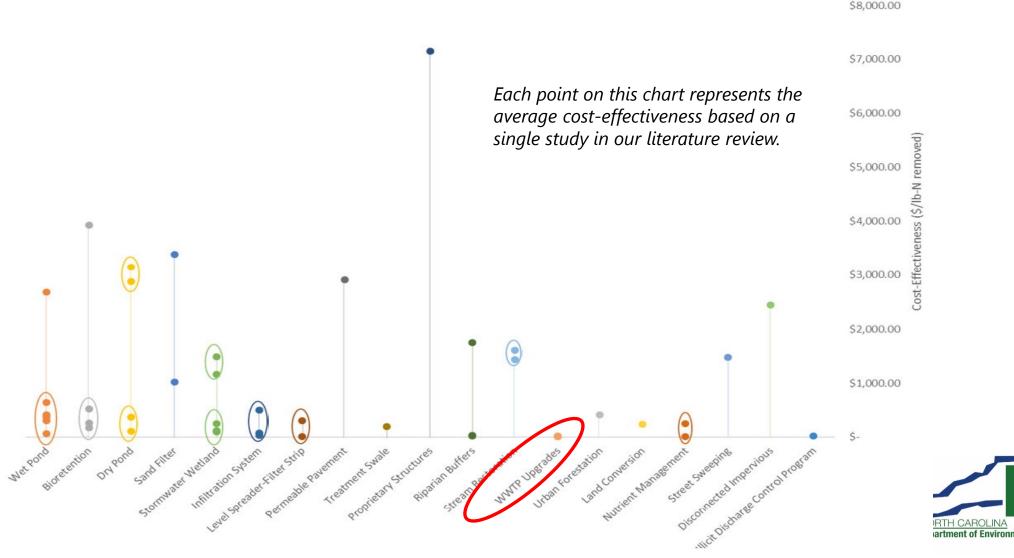
- Protects riparian buffers 50' out
- Implemented by DWR
 - Local governments in Jordan
- Table of Uses activities within buffer:
 - exempt,
 - prohibited,
 - allowable,
 - allowable with mitigation
- Driver for DMS compensatory mitigation program

Flow-Normalized Nitrogen Loads (% vs. 1991-1995) Neuse River at Fort Barnwell

NO3-N

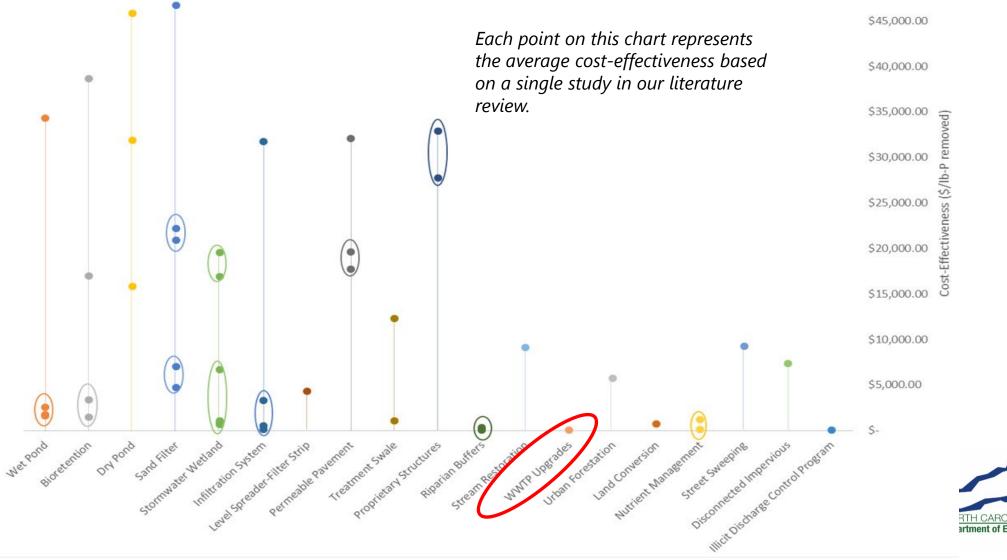
-O-TKN

-Total N



A Few PS: NPS Trading Considerations

- Relative cost-effectiveness, PS vs NPS reductions
- Relative credit uncertainties, NPS vs PS reductions
- Long-term credit performance, stewardship, NPS vs PS
- Potential political forces, NPS vs PS


Cost-Effectiveness of Nitrogen Removal BMPs and Programs (2019, McManus, Kirk and Rosenfeld, UNC Environmental Finance Center)

PATH CAROLINA Hartment of Environmental Quality

Cost-Effectiveness of Phosphorus Removal BMPs and Programs

(2019, McManus, Kirk and Rosenfeld, UNC Environmental Finance Center)

De

Sources of Uncertainty in NPS Practice Crediting

- PS:NPS Uncertainty
 - Daily flow, nutrient monitoring vs. not monitored, research-based inferred performance
 - Daily performance oversight vs. annual o&m inspection
 - Operational control vs. passive design
 - Relatively low susceptibility to environmental variation vs. wholly subject to environmental variability
- Individual NPS Practice Credit Uncertainty
 - Available research data pool often limited; more so with ecosystem and ag practices
 - Applicability of research studies specifics often varies vs. credit-seeking installations
 - Practice designs, physiographic setting specifics, catchment land management, credit method elements addressed
 - Inter-study design variability; many design facets, often dissimilar across studies
 - Intra/Inter-study performance results often highly variable
 - Often stakeholder pressure to assign generous credit; e.g. to incentivize implementation
 - Performance often evolves vs. new practice bias in research
- Comparative differences by NPS practice type:
 - Engineered stormwater practices more research, more control -> less uncertainty
 - Ecosystem restoration and agricultural practices less research, less control, more variable land manager more susceptibility to environmental factors -> significantly greater uncertainty

Factors in Wastewater vs. NPS Load Estimation Uncertainty

Source of Uncertainty	Wastewater	Nonpoint Sources
Measurement Uncertainty		
Calibration drift of monitoring equipment	✓	✓
Laboratory errors	✓	✓
Omission of sampling data	✓	
Differing or novel data collection		✓
Small sample sizes		✓
Surrogate measurements		✓
Inherent NPS monitoring limitations		✓
Delivery Uncertainty		
Delivery or Transport factors (stream to lake/estuary)	✓	✓
Landscape factors (landscape to stream)		✓
Measurement vs. Estimation		
Generalized estimates from literature		✓
Credit Establishment Uncertainty		
Weather-driven: episodic, seasonal, increasingly variable loading		✓
Large number of site variables		✓
Limited studies, inclusion of poor applicability studies		✓
Untested assumptions underpinning credit or research		✓
Simplified credit methods		✓
Differences in design of studies		✓
New practice bias		✓
Practice Implementation Uncertainty		
Environmental variability		✓
• Slope		✓
Soil type		✓
Landscape position Seasonal variation		✓
Extreme events (flooding, droughts)		✓
Floodplain connectivity		✓
Limited inputs for load reduction estimation tools		~
Unforeseen variations in practice design		✓
Compliance with maintenance requirements		✓
Project failure rate		~
Long term change in surrounding land uses		✓
Decreased practice performance over time		✓
Time lag between implementation and reductions		~
Prior Crediting Inaccuracies		
Documented crediting inaccuracies		1
		•

Baseline, Ratios: 2017-2020 Offset Rule Readoption

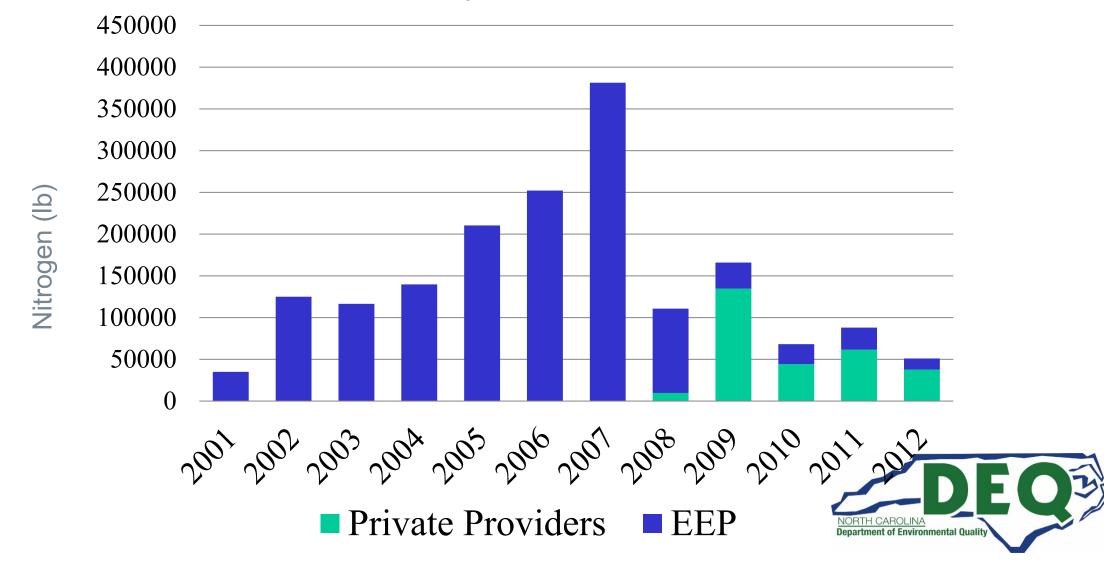
- PS:NPS offset uncertainty ratio
 - Initial proposal continued existing rule, 2:1
 - Public comment version lead Hearing Officer revised to 1.1:1
 - Final 2020 adopted rule 1.5:1
- Baseline initial proposal
 - Practices on developed land: baseline = current loading condition
 - Practices on undeveloped land:
 - Highest loading condition in baseline period*, or
 - Current loading condition if:
 - Forested in baseline but maintained in deforested state >10 yrs, and
 - Credit seeking party had no involvement in or influence on deforestation
 - * Managed forest land considered forest for loading purposes, regardless of prevailing cover condition during baseline period

Baseline - Final 2020 Offset Rule

- Baseline:
 - Practices on developed land: baseline = current loading condition
 - Practices on other land: language ambiguous
 - Project plan requirements include documentation, or best available evidence, of site condition in baseline period
- Developed lands logic
 - Post-baseline, post-stormwater rule development loading per strategy accounting; new reductions fair
 - Post-baseline, pre-rule development increased loading, but not rule violation; new reductions fair
- Practices on other lands expectations:
 - Continue using baseline time period as conceptual benchmark
 - Harvested managed forest not eligible for reforestation credit
 - Other cases best available evidence that current condition not "gamed" and not a regulatory compliance issue

Other Crediting Criteria, 2020 Offset Rule

- Presumptive credit for DWR-approved practice types:
 - Use specified credit method
 - Meet design specifications
- Annual mass load reductions to-stream. Delivery factors are strategy-specific.
- Not eligible:
 - State/federal compensatory mitigation, including credit stacking
 - Practices to comply with other rules under strategy
- Project requirements include
 - Site suitability review by DWR
 - Plans, drainage or conservation easements, as-builts, O&M, financial assurances
 - Banks banking instrument
 - Credit release schedule for restoration 5-7 yrs. based on establishment
 - Responsible entity; permanent projects require perpetual steward
- Ecological restoration projects damaged by natural causes may passively restore


Questions?

Cost Effectiveness of BMPs	Strategy	Туре	Avg. of TP Reduction [\$/ <mark>]b</mark>]	Avg. of TN Reduction [\$/[b]	Avg. of TP Reduction [%]	Avg. of TN Reduction [%]	Count TP	Count TN
NC Environmental Finance Center	Bioretention	Physical	\$ 10,637.79	\$ 754.05	0.59	0.52	8	8
	Dry Pond	Physical	\$ 30,083.66	\$ 659.10	0.16	0.08	10	16
McManus, Kirk, et al - 2019	Infiltration System	Physical	\$ 10,183.49	\$ 230.46	0.66	0.5	7	5
	Land Conversion	Physical	\$ 710.25	\$ 228.13	0.58	0.64	4	4
	Level Spreader-Filter Strip	Physical	\$ 4,292.00	\$ 199.44	0.38	0.35	2	3
	Permeable Pavement	Physical	\$ 34,956.95	\$ 2,905.07	0.61	0.48	7	4
	Proprietary Structure	Physical	\$ 28,249.59	\$ 7,148.10	0.46	0.08	10	1
Buffers 🔫	Riparian Buffer	Physical	\$ 164.50	\$ 454.51	0.48	0.58	3	4
	Sand filter Physical \$1	\$ 16,195.37	\$ 2,205.45	0.53	0.33	7	4	
	Stormwater Wetland	Physical	\$ 4,348.10	\$ 461.67	0.48	0.52	7	8
	Stream Restoration	Physical	\$ 9,095.00	\$ 1,522.58	No Data	No Data	2	4
	Treatment Swale	Physical	\$ 3,134.12	\$ 230.29	0.44	0.38		
WWTP Upgrades 🛶	WWTP Upgrade	Physical	\$ 50.84	\$ 13.97	No Data	No Data	9	15
	Wet Pond	Physical	\$ 7,440.22	\$ 438.67	0.44	0.28	6	4 6 15 15
	Disconnected Impervious Surfaces	Policy	\$ 7,354.09	\$ 2,439.05	No Data	No Data	1	1
IllicitDischarge 👄	Illicit Discharge Control Program	Policy	\$ 53.11	\$ 13.28	1	1	2	2
Control Program	Nutrient Management Programs	Policy	\$ 626.60	\$ 120.78	0.05	0.09	5	5
Control i Togram	Street Sweeping	Policy	\$ 9,595.35	\$ 1,824.64	0.09	0.03	2	2
	Urban Forestation	Policy	\$ 5,738.24	\$ 404.22	0.5	0.25	2	2

Offset Pounds N Purchased from EEP, Banks Inception to July 2012, Neuse/Tar

Major Strategies' Discharger Limits

Watershed	Mass TN Limits Equivalent To:	Mass TP Limits Equivalent To:	Facilities Affected		
Tar-Pamlico Estuary	6.85 mg/L	0.92 mg/L	15		
Neuse River Estuary	3.75 to 5.5 mg/L 6.7 mg/L (no limit)	2.0 mg/L (conc.)	32 ≥ 0.5MGD 37 < 0.5 MGD		
Jordan Lake Haw River Upper New Hope Lower New Hope	5.39 mg/L 3.04 mg/L 5.35 mg/L I 2.0 mg/L (no limit)	0.66 mg/L 0.37 mg/L 0.23 mg/L 2.0 mg/L (no limit)	9 ≥ 0.1 MGD 4 ≥ 0.1 MGD 1 ≥ 0.1 MGD 33 < 0.1 MGD		
Falls Lake (Stage 1) (Stage II)	3.0 - 3.6 mg/L* I.I3 mg/L I2.0 mg/L (no limit)	0.33 - 0.46 mg/L* 0.06 mg/L I 2.0 mg/L (no limit)	3 <u>></u> 0.1 MGD 3 < 0.1 MGD		
* At current flows + 10%					

*At current flows + 10%

Nutrient Strategies Adaptation -Some Sources Meriting Further Consideration

- Small dischargers (< 500k GPD)
- New Development tighter onsite controls
- Existing Developed Lands
 - Runoff
 - Sanitary infrastructure
- Forest harvesting in SMZs (riparian zones)
- Livestock open stream access
- Dry litter poultry (legislation required)

