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4R performance objectives

4R Nutrient Stewardship

*Performance objectives
define “Right”

*Competing objectives?
* Optimized production

* Minimize environmental
Impact

* Maximize Economic Return

University of Kentucky

College of Agriculture,
% Fusened g:am] Flngﬂ.'irunm::nr [ ] 2

s Cooperative Extension Service



Balancing the “Right”

% v Cooperative

*Performance objectives
define “Right”

Competing objectives?
* Optimized production

e Minimize environmental
Impact

* Maximize Economic Return

4R Nutrient Stewardship

*How do we balance tradeoffs
* Max yield # max profit
* Max profit # environmental
optimum
*The most profitable system
will likely have some level of
environmental impact

R T
il .
! .
=
L 1. )
b '?..',-h i
|1 s r g, e L ity Wrbkeng
University of Kentucky ot B
College of Agriculture, sk
Food and Environment . — [ I
ipeTaiive Extension Service Wi



Balance competing objectives

*Site-specific management
* Target resources
* Target practices

* Adjust for variability
*Time
*Space
* Management

4R Nutrient Stewardship
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Why precision?

High Precision Low Precision
Low Accuracy  High Accuracy
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Economic optimum
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Agronomic optimum
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Environmental optimum?
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Agronomic # Economic # Environmentally Optimum
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Extrapolating across years and sites
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Using accurate recommendations for variable system
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Low risk of yield loss — high risk of N loss
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I\/Ianagement matters
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*One field, four tillage
treatments, three replicates
e Same manure rate
* Same soil test P
* Same hydrology and slope

I B



I\/Ianagement matters

Cumulative P at load from four tillage systems (2006 — 2008)

1.00
© ° *One field, four tillage
O
5 treatments, three
ab .
= - replicates
S 060
S * Same manure rate
a5 . b *Same soil test P
@ 0.40
2 T * Same hydrology and
E 0.20 "_ c slope
= + Very different results
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Results varied across
time and space

e Surface applied poultry litter
provided a strong P signal in
runoff immediately after
application in 2006
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TP vs. Time
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Hydrology overshadows source or management

8 kg/ha/yr
P runoff
load

e \Mehlich-3 Soil P

College of Agric
Food and Envirg

Budda et al., 2009

Phosphorus loss had inverse
relationship with soil
phosphorus concentrations?

1 kg/ha/yr
P runoff <1 kg/ha/yr
P runoff

load

‘Mehlich-3 Soil P
177 mg/kg

Mehlich-3 Soil P
144 mg/kg
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Hydrology overshadows source or management

8 kg/ha/yr
P runoff
load

e \Mehlich-3.Soil P

College of Agric
Food and Envirg

Budda et al., 2009

Hydrology drove loss in absence
of manure application and
overshadowed soil P source

1 kg/ha/yr
P runoff <1 kg/ha/yr
P runoff 32L
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Runoff Volume
Volume

——

Mehlich-3 Soil P Mehlich-3 Soil P
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What about that Field runoff .
manure signal? =
w 6
Can we use £
management to mute %
the surface runoff 9 4
signal from manure 2
application o 5|
0

Apr = May June  July Aug  Sept

Courtesy Peter Kleinman
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Soil P drove loss in
this ditch drained
field

Legacy soil P
overshadowed field
runoff and incidental
transfer from manure

Dissolved P (mg/L)

Field runoff

Ditch flow

Apr  May June

~July

- Aug  Sept

Courtesy Peter Kleinman
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Targeted solutions

8
Field runoft
=
o 6
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o Ditch flow
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5

High P water 5
E
P5M layer
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More innovation needed
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echnology to improve placement and source

* No-till planter double disc
opener

*Closing wheels seal the
soil surface

* UKY Modified to treat
litter with nitrapyrin
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Less N and same vield

Sidedress @ 245 bu

v'Normal litter: 126 |b-
N/acre

v'Injected/treated: 42
Ib-N/acre
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More yield across all N rates
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Working on improved design with OSU and UGA




But wait...There’s an emerging P issue

*Past focus has been on areas
with significant, historic P
surpluses and manure
application

*Recent issues in Lake Erie
bring to light new concerns

Patel, J.K. 2017. Miles of Algae Covering Lake Erie. The New York Times

Available at https://www.nytimes.com/interactive/2017/10/03/science/earth/lake-erie.html (verified 12
October 2017).
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What if soils in agronomic range are problems?

*IPNI reports that 48% of Ohio
soil samples in 2015 were below
critical level

*Ohio Median STP has fallen each
year

*Precision management of soils in
agronomic ranges becomes more
Important

Patel, J.K. 2017. Miles of Algae Cove
New York Times

ring Lake Erie. The
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The picture is bigger than just
livestock
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We need to evaluate how we do precision

ersity of Kentucky

ge of Agriculture,
and Environment

=N
]
&

7]

olle

s ]
T

I B



On average soil test worked

Distribution of Difference: ¥_P -¥_0
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On average significant corn yield response to P
fertilizer, A yield = 9 to 18 bu/a in 3 of 4 site-years.
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On average soil test worked...but failed 50% of the time

Distribution of Difference: ¥_P -¥_0
With 95% Confidence Inersal for Mean
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On average significant corn yield response to P Regardless of soil test

fertilizer, A yield = 9 to 18 bu/a in 3 of 4 site-years. only half the plots need phosphorus fertilizer
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We need to understand mechanistic drivers of field
scale nutrient requirement

*Precision P management as
currently practiced is not
supported by science Pl
e Grid-based soil sampling is 2w
wrong 40
e Current P recommendations 20
don’t work for precision ag e

Regardless of soil test
only half the plots need phosphorus fertilizer

University of Kentucky
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We need to understand mechanistic drivers of field
scale nutrient requirement

*Precision P management as  *Sensor-based N

currently practiced is not management has solid
supported by science scientific underpinning
* Grid-based soil sampling is

wrong .

* Current P recommendations .,
don’t work for precision ag

Prescribed N Rate, Ibfa
B @
= Lo [

[
==

%)
=

—
Lo

Poorest Crop _ Best Crop

1 ' 1 1 1 1 1 1 1 1
] e T PR o S R O s s I L T | Py PO P R Sl SO o R W
I P S L P PR S L A S R P R S A A
niversity of Kentucky NDVI

ge of Agriculture,
vironment

—

S a0
R EZ
2

._.
==
o -

=
Pl |
- =1
F




P
ON

We need to understand meehanis

| . . t

*Precision P managemegnt as  *Sensor-based N
management has
scientific underpy
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Precision management challenges

e

Landscape

and Climate
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___ Variability

spatial and Temporal |

Economic
Return

Ecosystem
Services
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Precision manure management challenges

e

N, P, density,
H,O

Application/
Machinery
Performance

Landscape
and Climate
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Precision manure management challenges

Available
Technology

N, P, density,
H,O

Application/
Machinery
Performance

Available
Data

Landscape

, and Climate
User Bias
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A more comprehensive view of precision agriculture

4R Nutrient Stewardship

Sail minerals

Organic matter
-

r "‘I T T
PLaxT NUTETION
&lpm s
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Traditional soil test
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Traditional soil test
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Management tool

Calibrated and

=4 100 - + . .“t
@ PN AR ’;" % e v .';
E e [ Te® T, 0 e e
" . e .
L atitd
. T 80 *

(=] o *
j=3 -

Va I a e = "
s 60 LA SR g
- .
= Low < Medium High

] n-l 40 | + “’ ”“0
[<P]
r > .
o; * &
I te I I eX O = ** .
o 204 e ** *
~ o R
R i

» . 0 . ‘ . . ‘ : : : : : : : :
u a n t I tat I Ve M O d e I 0 10 20 30 40 50 60 70 8 9 100 110 120 130 140 150
Phosphorus Management Score

University of Kentucky
% College of Agriculiure,
Food and Environment _
y  Cooperative Extension Service



Relative Yield ( % )

Traditional soil test M) Management tool
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Integrate technology with decision support
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What can precision ag deliver?

¥

Time for farmer to focus on logistics of conservation
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What can precision ag deliver?

Time for farmer to focus on logistics of conservation

Better information to support decisions



What can precision ag deliver?

Time for farmer to focus on logistics of conservation

Better information to support decisions

Predictive feedback on conservation outcomes in real time
relative to decision making process
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What can precision ag deliver?

Time for farmer to focus on logistics of conservation

Better information to support decisions

Predictive feedback on conservation outcomes in real time
relative to decision making process
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% College of Agriculiure,
Food and Environment _
v Cooperative Extension Service



What's driving
practice?

Regulation




e

What's driving
practice?
Policy environment

University of Kentucky
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Regulation

Incentives
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What's driving
practice?

Information and
technology available
tO farmerS Technology
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What's driving
practice?

Information and
technology available
tO farmerS Technology
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What's driving
practice?

Their perception of
cost, value, outcome,
and impact
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What's driving
practice?

We need to deliver
technology informed
by human factors that
meets the farmer
where they are

University of Kentucky

College of Agriculture,
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