North Dakota's Nutrient Reduction Strategy

Marty Haroldson - NDDEQ Nutrients Permitting Workshop November 5-7, 2019 Alexandria, Virginia

Nutrient Reduction Strategy Outline

- What is the problem?
- What are the sources?
- Why develop a nutrient reduction strategy now?
- How was the strategy developed?
- What is the implementation strategy?
 - TMDLs
 - NPDES Permits

Nutrients

The Problem

Nutrient Pollution

- Nutrients (nitrogen and phosphorus), in appropriate amounts, are essential to the growth and health of aquatic communities
- Excess nutrients, however, can result in:
 - Proliferation of blue-green algae blooms which can cause toxins (cyanotoxicity)
 - Excessive algae and/or plant growth resulting in organic enrichment, low DO and fish kills
 - Excessive algae and plants can cause diurnal low DO or high pH
 - Increased drinking water treatment costs
 - Disinfection by-products concerns
 - Recreation impairments and aesthetics
 - Groundwater contamination (nitrates)

"HOUSTON, WE HAVE A PROBLEM"

- 50% U.S. streams have medium to high levels of N and P;
- Lakes and reservoirs 5 million acres impaired;
- 78% of assessed coastal waters are impacted by nutrient pollution;
- Drinking water violations have doubled in the past 8 years due to N
- The occurrence and severity of nuisance algal blooms is on the rise; and
- Algal toxins have potentially serious human health and ecological effects.

Homme Dam

ND RIVERS: NUTRIENTS: 50 Miles LOW DO: 410 Miles BIOLOGICAL: 2,109 Miles

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

ND LAKES: NUTRIENTS: 35,000 Acres LOW DO: 6,600 Acres

Harmful Algal Blooms (HABs)

- Lake Erie
- Lake Winnipeg
- North Dakota lakes
 - 2016 15 lakes and reservoirs
 - 2017 16 lakes and reservoirs
 - 2018 19 lakes and counting
 - 2019 18 + 3 lakes and reservoirs

Lakes and Reservoirs

- 47 lakes and reservoirs have been assessed as impaired or threatened due to nutrients
 - 24 with a nutrient TMDL written

Rivers and Streams – Total Nitrogen

- 6.7 percent (343.1 miles) in good condition
- 36 percent (1,859 miles) in fair condition
- 57.3 percent (2,799.6 miles) in poor condition

Rivers and Streams – Total Phosphorus

- 23 percent (1,187.1 miles) in good condition
- 7.7 percent (395.8 miles) in fair condition
- 69.3 percent (3,569.0 miles) in poor condition

Nutrient Sources

- Industrial and municipal point sources
- Stormwater runoff
- Failing septic systems
- Erosion and runoff from cropland
- Runoff from animal feeding operations
- Hydrologic modification, including wetland drainage and stream channelization

Nutrients

Why now?

Why a Nutrient Reduction Strategy for North Dakota?

- Lawsuits regarding nutrients (e.g., criteria, TMDLs, permits)
- Ever increasing number of waterbodies with blue-green algal blooms and cyanotoxin risks
- Impacts to Lake Winnipeg in the Red River Basin and Gulf of Mexico in the Missouri River Basin
- Response to Nancy Stoner memo dated March 16, 2011

Stoner Memo Highlights

- Reaffirms EPA's commitment to partnering with state's
- Recognizes that a one-size-fits-all solution to nitrogen and phosphorus pollution is neither desirable nor necessary
- Supports actions by states to protect their waters
 - Provides technical and financial assistance
- Recognizes the need for flexibility in key areas, but the need for certain minimum required elements in state programs

Nutrients

Developing the strategy

Strategy Goal

- To develop and implement costeffective approaches to reduce the delivery of nutrients from point source effluents and nonpoint source runoff.
 - Does not necessarily mean a reduction in the use or amount of fertilizer used on crops.
 - Minimize loss.
 - Efficient use.

Guiding Principles

- It must be technically and scientifically defensible.
- It can be reasonably implemented within State and local laws.
- Implementation must be equitable and include measures to safeguard public health and minimize economic impacts.

Strategy Development Process

- 35 member planning team
- Initiated in November 2012
- Planning team meeting April 2013

← → C 🏠 🔒 deq.nd.gov/WQ/3_Watershed_Mgmt/4_Nutrient_Reduction/NutRed.aspx	
🔛 Apps ★ Bookmarks 🛛 G Google 📙 Enforcement	
North Dakota Ind. gov Official Portal for Indexta State Government f	
North Dekota Ruality	
DEQ Home Air Quality Chemistry Municipal Facilities Waste Management Water Quality Office of Director Transition to NDDEQ	

☆

Stakeholder Participation

Ag Groups Municipalities Tribal entities Private citizens Agencies

Workgroups

- Municipal & Industrial Point Source
- Outreach & Education
- Agriculture & Nonpoint Source Pollution
- Nutrient Criteria Development
- Watershed Prioritization

Public comment

- April 4th –June 1st, 2018
- Public input meetings
 - May 1st Fargo
 - May 3rd Mandan

Strategy Core Components

- •Nutrient criteria
- •Setting targets
- Prioritization
- •Source reduction strategies

Nutrients

Nutrient criteria

What are water quality criteria and standards?

- State Regulations
- Defines beneficial uses for "waters of the state"
 - Aquatic life and fish
 - Recreation (e.g., swimming, boating, wading)
 - Drinking water supply (with treatment)
 - Agriculture (livestock watering and irrigation)
 - Industrial (cooling and washing)

What are water quality criteria and standards?

- Defines narrative and numeric standards for the protection of those uses
 - Narrative standards referred to as "free froms"
 - Numeric standards
 - Temperature
 - Dissolved oxygen (≥ 5 mg/L)
 - Ammonia
 - Trace metals
 - Organics
 - E. coli bacteria
 - Antidegadation Policy and Procedures
 - To prevent the degradation of waters which are better than water quality standards

Nutrient Criteria

Narrative criteria as a precursor

 "free from nutrients¹ attributable to municipal, industrial, or other discharges or agricultural practices, in concentrations or loadings which will cause accelerated eutrophication² resulting in the objectionable growth of aquatic vegetation or algae or other impairments to the extent that it threatens public health or welfare or impairs present or future beneficial uses"

Added Definitions

- ¹Nutrients are defined as chemical elements, primarily nitrogen and phosphorus, which are critical to the growth of aquatic plants and animals.
- ²Eutrophication is defined as the process of enrichment of rivers, stream, lakes, reservoirs and wetlands with nutrients needed to maintain primary production.

Nutrient Criteria

Nutrient Criteria

Setting Nutrient Targets

- Used to derive load allocations
 - Total maximum daily loads
 - Watershed restoration plans
 - Watershed protection plans
- Thresholds developed as a means of translating the narrative criteria
- Numeric criteria

Prioritization

- A systematic method for ranking
- "Bang for the buck"

• Priorities will vary based on purpose

- Monitoring and assessment
- Planning
- Permitting
- Restoration (Section 319 projects, NWQI)
- Protection

• Priorities will vary based on spatial scale

- Basin (Red River, Souris River, James River, Upper Missouri River, Lower Missouri River)
- Sub-basin (8-digit)
- Watershed (10-digit)
- Sub-watershed (12-digit)

Major River Basins

N O R T H Dakota Be Legendary.

Sub-basins (8-digit HUC)

NORTH Dakota Be Legendary.

Prioritization

- Methods depend on scale
 - State, regional, basin and watershed
 - Recovery Potential Screening Tool
 - HUC 8 and HUC 12
 - 3 indicator categories
 - Ecological
 - Stressor
 - Social (restoration potential)
 - USGS SPARROW Model
 - BMP prioritization
 - Field or catchment scale
 - Watershed planning and implementation
 - PTMApp
 - AnnAGNPS

Red River Basin Phosphorus Yield

Prioritization

- Methods depend on scale
 - Field or catchment scale
 - Watershed planning and implementation
 - AnnAGNPS
 - PTMApp

Red River Basin Phosphorus Yield

Source Reduction Strategies

- Municipal and Industrial Point Sources
- AFO/CAFOs
- Stormwater
- Septic Systems
- Agricultural Nonpoint Sources
 - BMPs

Nutrient Sources

Point Sources

North Dakota Pollutant Discharge Elimination System

• Points Sources Regulated

- Municipal Wastewater Treatment Facilities
 Industrial Facilities
- Stormwater Industrial, Construction, or Municipal Separate Storm Sewer System (MS4)
- Animal Feeding Operations (AFOs)

Point Source Strategy

- Category I
 - Major Municipal Facilities (Approx. 5,000 population)
 - Major and Minor Industrial Facilities
- Category II
 - Minor Municipal Lagoon Systems

Strategy for Category 1 Point Source Permits

Strategy for Category 1 Point Source Permits

Nutrient Sources

Agricultural Nonpoint Sources

What is agricultural nutrient NPS pollution and how does it move?

- Displaced nitrogen and phosphorus originating on agricultural lands.
 - Rain and snow melt runoff
 - Subsurface drainage
 - Wind erosion on exposed soils

Strategy Objectives for Ag NPS

- Increase nutrient use efficiencies
- Improve soil health on crop and grazing lands
- Disrupt transport processes
- Improve subsurface drainage water management
- Restore assimilative capabilities of surface waters

Systems Approach to BMP Implementation

From Tomer et al. 2013. Journal of Soil & Water Conservation. 68:113A-120A

Partnerships

- Agricultural producers
- Commodity groups
- Local, state, and federal agencies
- Universities
- Wildlife and conservation organizations
- Crop advisors and ag retail

Focus of Future Actions

- Cropland Management residue management, soil health, precision nutrient management, alternative uses, etc.
- Livestock Management grazing and manure management, improve manure utilization, etc.
- Subsurface & Surface Drainage Water Management manage timing and amount, research management methods, etc.
- Riparian Area Management restore degraded sites, increase technical support, etc.
- Coordinate Delivery improve communication, consistent messaging, pool and coordinate resources, target support, etc.

Implementing the Strategy

• Basin Water Quality Management Framework

- Watershed Approach
- Adaptive Management
 - Monitor
 - Assess
 - Target
 - Implement
 - Monitor
 - Reassess
- Education and Outreach*
- Accountability and Verification*
 - Measuring Success
 - Recognizing Failure

Implementing the Strategy

- Basin Water Quality Management Framework
 - Watershed Approach
 - Adaptive Management
 - Monitor
 - Assess
 - Target
 - Implement
 - Monitor
 - Reassess
 - Education and Outreach*
 - Accountability and Verification*
 - Measuring Success
 - Recognizing Failure

Nutrient Regulation

TMDLs and NPDES Permits

4911/12/2019

Add a footer

Questions?

