Implementation of Ammonia Criteria

Patrick Ducey

Nebraska Department of Environment and Energy (NDEE)

Final Aquatic Life Ambient Water Quality Criteria for Ammonia

- Freshwater ammonia criteria implemented in Federal Register August 22, 2013
- Passed in Nebraska Title 117 on December 13, 2014
- ▶ NDEQ/NDEE began to include the new criteria in NPDES permits in spring 2015
- September 2019 Majority of Nebraska permittees with the potential to discharge ammonia have implemented the new criteria in their permit

Why Implement the Ammonia Criteria?

Protect aquatic biota, particularly freshwater mussels (*Musculium, Lampsilis, Villosa*) - Aquatic surveys are crucial for implementation

Final 2013 ALC Criteria

2013 FINAL ALC CRITERIA FOR AMMONIA

(Magnitude, Frequency, and Duration)					
(mg TAN/L) pH 7.0, T=20 °C					
Acute (1-hour average) Chronic (30-day rolling average)	17 *1.				

*Not to exceed 2.5 times the CCC as a 4day average within the 30-days, i.e. 4.8 mg TAN/L at pH 7 and 20 $^{\circ}$ C more than once in 3 years on average.

years on average. Criteria frequency: Not to be exceeded more than once in 3 years on average.

- TAN total ammonia nitrogen
- CMC criterion maximum concentration acute criterion
- CCC criterion continuous concentration chronic criterion

Nebraska - Site-Specific Criteria

- 40 CFR Part 131.11(b)(1)(ii) allows for site-specific conditions
- Nebraska has warmwater and coldwater criteria (coldwater <25 °C)</p>
- CW Acute One Hour Average Concentration Based on 1Q10 Conditions

003.03A Total Ammonia (as nitrogen).

003.03A1 One-hour average concentration in mg/l not to exceed the numerical value given by

AV=Minimum of
$$\left\{ \left(\frac{0.275}{1+10^{7.204-pH}} + \frac{39.0}{1+10^{pH-7.204}} \right)$$
, or
 $0.7249 \left(\frac{0.0114}{1+10^{7.204-pH}} + \frac{1.6181}{1+10^{pH-7.204}} \right) (23.12 \times 10^{0.036(20-Temp)}) \right\}$

CW Chronic - Thirty-Day Average Concentration - Based on 30Q5 Conditions

003.03A2 Thirty-day average concentration in mg/l not to exceed the numerical value given by

 $\mathrm{CV} = 0.8876 \left(\frac{0.0278}{1 + 10^{7.688 - pH}} + \frac{1.1994}{1 + 10^{pH - 7.688}} \right) \left(2.126 \times 10^{0.028 \times (20 - \text{Maximum of } \{\text{Temp, or 7}\})} \right)$

Acute Warmwater Criteria

003.04A1 One-hour average concentration in mg/l not to exceed the numerical value given by

$$AV = 0.7249 \left(\frac{0.0114}{1 + 10^{7.204 - pH}} + \frac{1.6181}{1 + 10^{pH - 7.204}} \right) \times \text{Minimum of } \{51.93, \text{ or } 23.12(10^{0.036(20 - Temp)})\}$$

where Temp is °C

ONE-HOUR AVERAGE CRITERIA FOR TOTAL AMMONIA (mg/l) Warmwater Aquatic Life Use Classes

								pH						
		6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0	8.2	8.4	8.6	8.8	9.0
	0.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	5.97	4.05	2.77	1.92	1.38
	2.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	5.97	4.05	2.77	1.92	1.38
	4.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	5.97	4.05	2.77	1.92	1.38
	6.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	5.97	4.05	2.77	1.92	1.38
	8.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	5.97	4.05	2.77	1.92	1.38
6	10.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	5.97	4.05	2.77	1.92	1.38
్	12.0	42.22	37.85	32.53	26.62	20.70	15.35	10.94	7.58	5.16	3.50	2.39	1.66	1.19
ţī.	14.0	35.77	32.07	27.56	22.56	17.54	13.01	9.27	6.42	4.37	2.97	2.02	1.41	1.01
era	16.0	30.30	27.17	23.35	19.11	14.86	11.02	7.85	5.44	3.71	2.51	1.72	1.19	0.86
đ	18.0	25.67	23.02	19.78	16.19	12.59	9.34	6.65	4.61	3.14	2.13	1.45	1.01	0.73
Te	20.0	21.75	19.50	16.76	13.72	10.67	7.91	5.64	3.90	2.66	1.80	1.23	0.86	0.62
	22.0	18.43	16.52	14.20	11.62	9.04	6.70	4.78	3.31	2.25	1.53	1.04	0.73	0.52
	24.0	15.61	14.00	12.03	9.85	7.66	5.68	4.05	2.80	1.91	1.29	0.88	0.62	0.44
	26.0	13.23	11.86	10.19	8.34	6.49	4.81	3.43	2.37	1.62	1.10	0.75	0.52	0.37
	28.0	11.21	10.05	8.64	7.07	5.50	4.08	2.90	2.01	1.37	0.93	0.63	0.44	0.32
	30.0	9.50	8.51	7.32	5.99	4.66	3.45	2.46	1.70	1.16	0.79	0.54	0.37	0.27

Warmwater Chronic Criteria

003.04A2 Thirty-day average concentration in mg/l not to exceed the numerical value given by

 $\text{CV} = 0.8876 \left(\frac{0.0278}{1 + 10^{7.688 - pH}} + \frac{1.1994}{1 + 10^{pH - 7.688}} \right) \left(2.126 \times 10^{0.028 \times (20 - \text{Maximum of } \{\text{Temp, or 7}\})} \right)$

where Temp is °C

003.04A2a The highest four-day average concentration within a thirty-day period shall not exceed 2.5 times the thirty-day criterion.

<u>003.04A2b</u> The following table shows thirty-day average criteria for total ammonia at various temperatures and pHs.

THIRTY-DAY AVERAGE CRITERIA FOR TOTAL AMMONIA (mg/l) Warmwater Aquatic Life Use Classes

								pH						
		6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0	8.2	8.4	8.6	8.8	9.0
	0.0	4.85	4.65	4.36	3.98	3.49	2.94	2.35	1.80	1.32	0.95	0.68	0.49	0.36
	2.0	4.85	4.65	4.36	3.98	3.49	2.94	2.35	1.80	1.32	0.95	0.68	0.49	0.36
	4.0	4.85	4.65	4.36	3.98	3.49	2.94	2.35	1.80	1.32	0.95	0.68	0.49	0.36
	6.0	4.85	4.65	4.36	3.98	3.49	2.94	2.35	1.80	1.32	0.95	0.68	0.49	0.36
	8.0	4.54	4.36	4.09	3.73	3.28	2.75	2.20	1.68	1.24	0.89	0.64	0.46	0.34
ତ	10.0	3.99	3.83	3.60	3.28	2.88	2.42	1.94	1.48	1.09	0.78	0.56	0.40	0.30
్	12.0	3.51	3.37	3.16	2.88	2.53	2.13	1.70	1.30	0.96	0.69	0.49	0.35	0.26
Ĩ	14.0	3.09	2.96	2.78	2.53	2.23	1.87	1.50	1.14	0.84	0.61	0.43	0.31	0.23
era	16.0	2.71	2.60	2.44	2.23	1.96	1.64	1.32	1.01	0.74	0.53	0.38	0.27	0.20
đ	18.0	2.38	2.29	2.15	1.96	1.72	1.44	1.16	0.88	0.65	0.47	0.33	0.24	0.18
E,	20.0	2.10	2.01	1.89	1.72	1.51	1.27	1.02	0.78	0.57	0.41	0.29	0.21	0.16
	22.0	1.84	1.77	1.66	1.51	1.33	1.12	0.89	0.68	0.50	0.36	0.26	0.19	0.14
	24.0	1.62	1.55	1.46	1.33	1.17	0.98	0.79	0.60	0.44	0.32	0.23	0.16	0.12
	26.0	1.42	1.37	1.28	1.17	1.03	0.86	0.69	0.53	0.39	0.28	0.20	0.14	0.11
	28.0	1.25	1.20	1.13	1.03	0.90	0.76	0.61	0.46	0.34	0.25	0.18	0.13	0.09
	30.0	1.10	1.05	0.99	0.90	0.79	0.67	0.53	0.41	0.30	0.22	0.15	0.11	0.08

Creating Limits using the Ammonia ALC

- Every state develops limits differently
- Technical Support Document for Water Quality-based Toxics Control (TSD)
- Limits may be developed with:
 - End-of-pipe limits based on criteria
 - Wasteload allocations
 - Mixing zones
 - Dye studies
 - Software
 - ► CORMIX
 - ► OpenFOAM
 - Visual Plumes

Nebraska Two Value Steady-State WLAs

Facility	Seward WWTF			Spring		Summer		Vinter
Program ID	NE0023876		1q10 cfs	6.14		0.45		4.30
Receiving Water	Plum Creek		7q10 cfs	8.90		0.91		5.48
Segment	BB4-20600		30q5 cfs	10.96		3.93		8.05
Stream Flow Source	Stream Calculation		Chronic NH3 background mg/L	0.1		0.12		0.05
Confidence	Low		Acute NH3 background mg/L	0.564		0.221		0.193
Background pollutant source	BB4-20800		Other Chronic background mg/L					
Confidence	Med		Other Acute background mg/L					
Effluent data source	ICIS		Effluent Median MGD	0.792		0.841		0.73
Confidence	High		Effluent Median cfs	1.225		1.301		1.129
		Known Stream Flow (cfs)	Known Average Velocity (ft/s)	Known Average Depth (ft)	Known Average Width (ft)	Stream Slope (ft/mile)	Ls/Lv	Chronic Mixing Zone to 5000 Ft?
Receiving Stream Cł	naracteristics	5.46	0.65	0.7	12	6	1.5	N
Spring				Summer			Winter	
Chronic NH3 Criteria	Chronic NH3 WLA	% Stream	Chronic NH3 Criteria	Chronic NH3 VLA	% Stream	Chronic NH3 Criteria	Chronic NH3 VLA	% Stream
0.984	8.89	100.0	0.978	3.57	100.0	2.759	22.07	100.0
Acute NH3 Criteria	Acute NH3 WLA	%Stream	Acute NH3 Criteria	Acute NH3 WLA	% Stream	Acute NH3 WLA	Acute NH3 WLA	%Stream
12.717	39.37	43.8	8.099	9.46	50.00	13.793	34.08	39.2

Nebraska Water Quality Limits

Gen	eral Data			Water Quality Based Pe	ermit Limit	Calculatio	ons for:			
Facility Name:	Seward W	WTF			NH3					
Permit Number:	NE002387	6			Spring	Summer	Winter			
Date:	3-Apr-18			Acute WLA	39.37	9.46	34.08			
Permit Writer:	Patrick Du	cey		Chronic WLA	8.89	3.57	22.07			
Receiving Stream:	Plum Cree	k		Acute LTA	10.67	4.45	5.62			
Title 117 ID:	BB4-20600			Chronic LTA	4.16	2.39	6.73			
Aquatic Use:	WWB			Concentration E	Based Perm	it Limits:				
Pollutant of Concern:	NH3			Maximum Daily (mg/L)	15.35	5.08	34.08			
Coefficient of Variation (CV):				Average Monthly (mg/L)	6.99	3.16	12.38			
Spring	0.729			Mass Based	l Permit Li	mits:				
Summer	0.362			Maximum Daily (kg/day)	46.02	16.17	94.17			
Winter	1.274			Average Monthly (kg/day)	20.95	10.05	34.22			
Samples/Month (N):	4									
Chronic (N) day average:	4			Whole Effluent Toxicity Limits						
Data from	NLA Works	heet		**Based on CV of 0.6						
	Spring	Summer	Winter		Spring	Summer	Winter			
Effluent Flow in cfs:	1.225	1.301	1.129	Acute WLA	0.96	0.35	0.75			
1q10 Stream Flow in cfs:	6.14	0.45	4.3	Chronic WLA	8.26	1.70	5.85			
7q10 Stream Flow in cfs:	8.9	0.91	5.48	Acute LTA	0.31	0.11	0.24			
30q5 Stream Flow in cfs:	10.96	3.93	8.05	Chronic LTA	4.36	0.90	3.09			
% 1q10 used for mixing:	43.776	50.000	39.182	Acute Toxicity (TUa)	0.96	0.35	0.75			
% 7q10 used for mixing:	100.000	100.000	100.000	Chronic Toxicity (TUc)	13.57	2.79	9.61			
% 30q5 used for mixing:	100.000	100.000	100.000	Permit Limits:						
Acute WLA:	39.37	9.46	34.08	Acute Toxicity (TUa)	1.00	1.00	1.00			
Chronic WLA:	8.89	3.57	22.07							
Calculated	Calculated WLA Multipliers									
	Spring	Summer	Winter							
acute WLA multiplier:	0.271	0.470	0.165							
chronic WLA multiplier:	0.468	0.669	0.305							
MDL LTA multiplier:	3.69	2.13	6.06							
AML LTA multiplier:	1.68	1.32	2.20							

CORMIX CORMIX v11.0.0.0 \times Project Pages Pre-Processing Tools Run Output Data Reports Post-Processing/Advanced Help E Save User Manual CorHelp Print lbs ka Validate 🗳 🗳 & Run | FC Tree Load Clear SI-Units FFL CorSens Save As CorSpy CorVue CorJe Project Effluent Ambient Discharge Mixing Zone Outpu Processing Discharge Page 🛛 🔸 🚺 🔸 -Discharge Geometry Data CORMIX2 CORMIX3 CORMIX1 Single Port Multiport Surface Buoyant Surface Discharge Discharge located on: 💌 right bank -Discharge Configuration -Discharge Outlet-Flush Protruding Co-flowing Channel Pipe Width: 3 ▼ ft Horizontal Angle SIGMA: 90 degrees Depth: 0.934 🔽 ft ▼ degrees Bottom Slope: 0 Fremont Ammonia Acute Summer exp Discharge Excess (mg/l) Plume Centerline Flow Class: SA2 Origin: Water Surface Local Depth at Discharge Outlet: 1.009 🔽 🕇 Regulatory Mixing Zone (RMZ) _ 10 6 8 14 18 CORMIX3 Simulation Length units in meters - - End of Near Field Region (NFR) Distortion Scale: Y:X = 1.6 Z:X = 60 Cormix Module Boundary (MOD) Visualization up to X = 762 m (out of ROI X = 762 m)

- Advantages: More accurate, limits are higher than steady-state but still protective of water quality
- Disadvantages: Cannot be used for very low flow and ephemeral streams

Limits Implemented in Nebraska NPDES Permits

- Monitoring frequency dependent on effluent flow rate, compliance history for ammonia, reasonable potential
- Sample type dependent on type of facility
- Most facilities have been able to meet new limits

Table 2: Seasonal Discharge Limits and Monitoring Requirements											
Demonsterne	Storet	Units	Discharg	e Limits	Monitoring	Sample Type					
rarameters	#		Monthly Average	Daily Maximum	Frequency						
Spring Ammonia	00610	mg/L	2.47	4.96	Weekly	24-Hour Composite					
(March 1 – May 31)	00010	kg/day	5.86	11.77	WCCKIY						
Summer Ammonia (June 1 – Oct. 31)	00610	mg/L	1.99	3.99	Waalday	24-Hour Composite					
		kg/day	4.66	9.35	Weekly						
Winter Ammonia	00610	mg/L	4.62	9.26	Weeldre	24-Hour Composite					
(Nov. 1 - Feb. 28 [29])	00010	kg/day	10.59	21.23	weekiy						
Acute Toxicity Ceriodaphnia sp	61425	TUa	Report	1.00	Annually ^(a)	24-Hour Composite					
Acute Toxicity Pimephales promelas	61427	IUa	Report	1.00	Annually ^(a)	24-Hour Composite					
T											

Footnotes:

(a) Sampling shall be conducted seasonally. One year testing shall be conducted in spring, one in summer, one in winter, etc.

Abbreviations: mg/L - milligrams per liter kg/day - kilograms per day TUa - acute toxic units

Stream Impairments

- ▶ In Nebraska, the Wood River was designated as impaired by ammonia
- Ammonia ALC implementation for the Gibbon POTW addresses the impairment

What if Facilities Cannot Meet Proposed Limits?

- Permitting Tools
 - Compliance Schedules rules set forth in 40 CFR Part 122.47
 - More accurate data
 - Variances Nebraska considering controlled discharge lagoon variance
- Facility improvements, new treatment technologies
- Other methods to meet ammonia ALC
 - Ceasing to discharge
 - Land application of treated effluent
 - Consent Orders

New Technologies and Engineering

- Some municipalities need to construct new WWTFs to meet limits expensive
- York Water Reclamation Facility newest POTW in state BNR
- Some POTWs installing diffusers to increase mixing

Challenges to ALC Implementation - Data

- **EPA** permit writers do not have comprehensive access to state databases
- Lack of data (Temperature, pH, ammonia content, flow rate)
- Receiving stream flow might be difficult to determine
 - USGS gages might not be available (Nebraska also has DNR gages)
 - StreamStats not available in every state

Changing River Conditions

- The ammonia criteria is dependent on temperature and pressure, what if those are changing?
- In Nebraska, the receiving stream is basis for chronic criteria, some facilities have limits based on the chronic criteria
- In many Nebraska streams, pH is increasing

Big Blue River - BB1-10000 Median pH							
	2005-2008						
Spring Summer Win							
7.8	8.03	7.55					
2011-2014							
Spring	Summer	Winter					
8.5	8.5	7.93					

Temperature - Do states have data regarding changing temperatures? Higher temperature means lower criteria for facilities.

Ammonia Residuals in Streams

- High background ammonia from other point sources and non-point sources can create lower limits
- Example: Gering Western Sugar Scottsbluff

Choosing Data - Background Ammonia

Controlled Discharge Lagoon Facilities

- Have high pH (often over 9.0 standard units)
- Low ammonia limits
- Many facilities are encouraged to land apply
- Nebraska is looking into a variance for CDLs

NPDES Permits

- ▶ 40 CFR Part 122.44 Gives authority to establish limitations and standards
- Antidegradation and protection of beneficial uses is important tool to implement the ALC
- Use TMDLs if available
- Anti-backsliding can be useful for some facilities to maintain limits
 - ► Facilities may be exempt from anti-backsliding if they cannot meet the new limits
 - Exemptions may be useful for variances
 - New facilities may be exempt if proxy data is used

Questions/Comments?

- What are your solutions to implementing the ammonia criteria?
- What if a facility cannot meet limits?

Patrick Ducey - 402-471-2188 - patrick.ducey@nebraska.gov