

STRUVITE HARVESTED AS A USEFUL BYPRODUCT

Ron Gearhart - Process Coordinator

LIVABILITY

Making Boise the Most Livable City in the Country

OUR CITIZENS VALUE IMPROVED OUTCOMES

76% of Boiseans voted "YES" to Foothills Open Space and Clean Water Levy

Wastewater survey results:

- Invest to recover water, energy, reduce carbon ~75%
- Willing to pay for better outcomes ~70%

OPERATIONAL OPPORTUNITIES AND CHALLENGES OF STRUVITE RECOVERY

WEST BOISE WRF

- Forms in water when ammonium ion (NH_4^+) , magnesium ion (Mg^{+2}) , and phosphate (PO_4^{-3}) are present
- Specific pH
- Favorable water chemistry (lack of calcium interference, etc);
- Forms NH₄ MgPO₄·6H₂O as either dispersed or as a crystal

UNINTENTIONAL STRUVITE

Unintentional formation follows Murphy's Law ... as a general rule of thumb

Lower Industry Nutrient Limits Result in operational challenges

WEST BOISE WRF – PHOSPHORUS MASS BALANCE

COMBINED STRUVITE REACTOR INFLUENT – 2016

Common Struvite Reactor Chemistry

LOWER EFFLUENT NUTRIENT LIMITS RESULT IN HIGHER SIDE STREAM CONCENTRATIONS

- Anaerobic Digester Filtrate Ammonia concentrations approach 1000 mg/L
- Anaerobic Digester Filtrate Dissolved Phosphorous concentrations increased from 80 mg/L to 400 mg/L after EBNR was implemented at West Boise WRF
- Commissioning of the WAS P release process allowed for 50% release of acquired Phosphorous, resulting in Anaerobic Filtrate of 280 mg/L
- WAS P Release tank Phosphorus concentrations range from 160 mg/L to 200 mg/L
- Side stream treatment critical to permit compliance strategy

REACTOR IMPACTS AND SUCCESS

Parameter	Reactor Influent	Reactor Effluent	Removal
Phosphorous	600 Pounds Per Day	120 Pounds Per Day	80% : 480 Pounds
Ammonia	1350 Pounds Per Day	1080 Pounds Per Day	20% : 270 Pounds

Side Stream Treatment

- Reduced Phosphorous impact in Primary Effluent From 4 mg/L to 0.80 mg/L.
- Reduced Ammonia impact in Primary Effluent From 8.1 mg/L to 6.5 mg/L
- Reduction of unintentional struvite formation in pipes, anaerobic digesters, dewatering equipment, and storage basins.
- Reduced phosphorus content of biosolids and subsequent impacts to TMSBAS loadings and site longevity
- Recovery of a recyclable product contributing to the City's sustainability goals by recovering this limited phosphorus-based resource

TRADITIONAL CHEMICAL ALTERNATIVE

- Metal Salts have undesirable consequences
 - Inert solids production increase
 - Unfavorable biosolids impacts
 - Increased solids handling
 - Non-bioavailable phosphorus
 - Increased metal content
 - Additional negative impacts
 - Carbon footprint
 - Compounding chemical use
 - Cost
 - U.V. inefficiencies and maintenance
 - Safety
 - Negative impacts to EBNR

STRUVITE PRODUCTION BENEFITS

- Extracting 480 pounds per day of Phosphorus and subsequent Ammonia (5000 pounds of struvite)
- Reducing nutrient loading in plant recycle stream
- Recovered nutrients have immense fertilizer value
- Limits chemical usage and their negative impacts
- Potential revenue
- Potential cost savings
- Meeting community expectations
- Positive environmental impacts vs Chemicals

STRUVITE PRODUCTION CHALLENGES

- Higher capital cost and footprint
- Additional staff and training
- Complexity, automation
- Product Handling
- Value and Marketing
- Regulatory uncertainty
- Upsets create chain reaction through entire process

REGULATORY CONSIDERATIONS

SUMMARY OF NACWA RECOMMENDATIONS

- Struvite does not fit the regulatory definition of sewage sludge
- Clean Water Act promotes beneficial reuse, local autonomy, flexibility and innovation;
 - Exempting struvite from 503 furthers these goals
- Regulating struvite as sewage sludge constitutes an unreasonable burden to producers of struvite

- "...EPA considers products extracted from sewage sludge that are not land applied, land disposed, or incinerated, but instead sold into a commodity market, outside the scope of Part 503".
- "...EPA recognizes that some products...could conceivably be so heavily refined or processed that a significant transformation or change in quality has occurred that it would be unreasonable to describe those products as "derived from sewage sludge".
- "....EPA is willing to consider on a case-by-case basis whether a particular product is 'derived from sewage sludge'". LASTING ENVIRONMENTS | INNOVATIVE ENTERPRISES | VIBRANT COMMUNITIES 17

METALS

Parameter	Average concentration (mg/kg)	Pollutant Concentration Limit from 40 CFR 503.13, Table 3	Maximum concentration (mg/kg)	Ceiling Concentration Limit from 40 CFR 503.13, Table 1
Arsenic	1.33	41	4.32	75
Cadmium	<0.06	39	<0.20	85
Copper	2.0	1500	4.32	4300
Lead	<0.48	300	<1.57	840
Mercury	0.002876	17	0.00961	57
Molybdenu m	0.37		1.18	75
Nickel	0.30	420	0.65	420
Selenium	<0.82	100	<2.56	100
Zinc	5.04	2800	10.2	7500

Struvite is a mineral with high purity - metals concentrations are consistently below 503 thresholds

VECTOR ATTRACTION AND PATHOGEN REDUCTION

- No unstabilized primary solids; no organic material; no concern for vector attraction
- Fecal coliform concentrations well below Class A threshold without a pathogen reduction process
- No enteric viruses or viable Helminth Ova detected in raw struvite with no regrowth after up to 6 months

CLASS A HEAT TREATMENT PROCESS

Class A

- Not necessary, safe, Not a Bio-solid
- Treatment technology is destructive
 - Material, LIV, revenue,
- Bottleneck to marketing and reuse
- High energy
 - 26% of West Boise WRF Natural gas consumption
- Significant O&M cost
- Storage and documentation of treated material
- Deterrent to wider industry use
- Requires manual batching and material handling
- High failure rate (10-15%)
 - Seasonal
 - Mechanical
 - Product consistency

STRUVITE SUMMARY

- Critical to meeting effluent phosphorus limits
- Recovering nearly 1/3rd of our system phosphorus loading as Struvite
- 5 years of R&D, extensive data collection, process optimization, coordination with EPA HQ
 - First large scale product release in 2017
- P-release tank limits dewatering polymer consumption
- Incidental struvite in digesters reduced (less P and MG)
- Safe and Sustainable resource
- Alternatives Chemicals.....? Additional farm/landfill loads (organic/inorganic). Not the 'Right Way'
- Class A struvite complicated and messy, unnecessary, and a deterrent to others in the industry

QUESTIONS

TWENTY MILE SOUTH BIOSOLIDS APPLICATION SITE

Beneficially Recycling Biosolids to Grow Crops

INTRODUCTION

- The TMSBAS is owned and operated by the City of Boise for the reuse of biosolids generated at the municipality's two WWTFs.
- The original site, consisting of 2,325 acres, was purchased in 1994 and has always been permitted by the EPA for biosolids application.
- EPA Region X is the regulating authority (IDEQ seeking primacy).
- Biosolids reuse on the 1,620 acre Watkins land was not permitted due to language in Boise's NPDES permits (1999, 2001 and 2003 versions.)
- In 2008, the City acquired the 'Nicholson addition' of 280 acres.

INTRODUCTION (CONTINUED)

• In 2013, IDEQ approved a Biosolids Management Plan for the entire 4,225 acres of the TMSBAS, including the original site, the Watkins Property, and the Nicholson addition.

3 O I S I

BACKGROUND

- Primary crops are alfalfa (hay), corn, and winter wheat. All crops are sold to local dairies for feed and the grain is sold to a local elevator.
- In Idaho, about 60% of municipal biosolids are land applied.
- The TMSBAS is the only operation of its kind that we are aware of.
- Some farming tasks such as wheat combining and corn harvesting are done by outside custom harvesters but the City does everything else.
 - This controls and limits our regulatory liability.
 - We also get revenue to help keep sewer rates low for our ratepayers.
 - We strive to be revenue neutral for biosolids recycling operations

TMSBAS IS AN IDEAL LAND APPLICATION SITE

- No surface waters of the US on site.
- Approximately 270 feet to groundwater.
- Few neighbors and partially bordered by BLM.
 - Minimal nuisance complaints.
 - Site security 4 families live on site.
- Relatively short hauling distance ~20 miles each way to West Boise.
- 23 years of extensive data collection

BIOSOLIDS ARE A NUTRIENT RICH, VALUABLE MATERIAL

SELECT MACRONUTRIENTS AND MICRONUTRIENTS PROVIDED BY THE CITY OF BOISE'S BIOSOLIDS

Nutrient	Provided by 1 dry ton of biosolids (lbs/dry ton)	Provided in a typical application at TMSF* (lbs/acre)	
Nitrogen (1 st year)	42.5	170	
Phosphorus	51.1	204	
Potassium	6.1	24	
Iron	34.0	136	
Boron	0.1	0.4	
Copper	1.4	5.4	
Zinc	1.3	5.4	

* - Typical application assumed at 4 dry tons/acre.

BIOSOLIDS ARE A NUTRIENT RICH, VALUABLE MATERIAL

COMMERCIAL FERTILIZER VALUE OF CITY OF BOISE'S BIOSOLIDS

Nutrient	Total Nutrient (% dry wt.)	Plant Available Nutrients from Biosolids (lbs/dry ton)	Equivalent Fertilizer (lbs/dry ton)	Bulk Fertilizer List Price (\$/lb)	Nutrient Value (\$/dry ton)
Nitrogen (N)1	6.89%	42.5	132.8 NH ₄ NO ₃	\$0.27	\$36.25
Phosphorus (P) <mark>2</mark>	2.55%	20.4	46.7 P ₂ O ₅	\$0.38	\$17.93
Potassium (K)3	0.23%	4.6	5.5 K ₂ O	\$0.33	\$1.83
				Total	\$56.01

The City of Boise applied 3,634 dry tons in 2015 giving the biosolids a total fertilizer value of \$203,556!

- 1 Assumes 50% of ammonium & 25% Org-N is available to crop
- 2 Assumes 40% of P is plant available in year 1
- 3 Assumes 100% of K is plant available

TMSBAS NUTRIENT MANAGEMENT PROGRAM

- Main Goal: Want to maintain max nutrients in the soil when the crop is actively growing and end the season with minimal residual nutrients.
- What About Phosphorus???
 - There is uncertainty on how the regulators (EPA, IDEQ) will address P in Idaho, if at all.
 - Very low phosphorus effluent limitations are increasing the concentration of P and volume of biosolids

TMSBAS NUTRIENT MANAGEMENT PROGRAM

- TMSBAS has continued to manage biosolids application based on soil phosphorus levels as follows:
 - Target for a maximum of 30 ppm of Olsen Phosphorus in the 16-24" soil layer through management practices
 - If EPA of IDEQ use NRCS Code 590 or similar to regulate land application of biosolids in the future, the site may be limited based on soil P levels.
 - Regardless of future EPA/DEQ requirements for biosolids application, for the long-term sustainability of the TMSBAS, soil P levels should continue to be managed to keep P in the root zone (top 24" of soil).
 - NRCS Code 590 was referenced in Phosphorus in Biosolids: How to Protect Water Quality While Advancing Biosolids Use. WEF Sustainable Residuals Use Subcommittee, May 2014.

SUSTAINABILITY

- We are in the business of nutrient recycling.
- Is there a better example of sustainability than using our own treated human waste to produce food?
- The Treasure Valley is an agricultural community and we take pride in owning and operating the largest contiguous farm in Ada County.

Graphic Courtesy of Northwest Biosolids

BENEFITS OF BIOSOLIDS LAND APPLICATION

- Feeding the soil vs. feeding the plant.
- Reduces or eliminates the need for commercial fertilizers.
- Improves the physical qualities of the soil.
- Keeps biosolids out of landfills.
- Biosolids application sites are managed to protect surface and ground water sources.
- Land application is generally lowest cost option for managing Class B biosolids.

SUSTAINABILITY

- New Office and Maintenance Facility Completed in July, 2016.
 - 56.4 KW solar array on the roof makes this the first Zero Net Energy (ZNE) Commercial Building in Idaho.
 - Cost \$3.2 million to construct.
 - Will save approximately \$24,000 per year in energy costs.
 - It was estimated that the "extra" investment in the building envelope and solar array will be recouped in about 14 years.
 - From July 2016 to July 2017, the facility produced 165% of the power it consumed. Therefore, this payoff will be even less!

CONTACT INFORMATION

Ben Nydegger Biosolids Program Manager City of Boise Public Works Dept. Office: (208) 608-7446 Cell (208) 484-2061 bnydegger@cityofboise.org

Ron Gearhart Wastewater Process Coordinator City of Boise Public Works Dept. Office: (208) 608-7240 Cell (208) 484-3558 rgearhart@cityofboise.org

Photo courtesy of the Nature Conservancy

