

Chemical Phosphorus Removal With Aluminum Sulfate or Polyaluminum Chloride and Impacts to Aluminum Criteria

Richard K. Friesner, Ph.D. New England Interstate Water Pollution Control Commission

2017 ACWA Nutrients Permitting Workshop

We are NEIWPCC

A community of problem solvers advancing clean water in the Northeast, in service to the states and the people.

Our mission includes:

- Research and Monitoring
- Outreach and Education
- Training and Supporting Environmental Professionals
- Representing the Region in Matters of Federal Policy

Problem Statement

- Phosphorus removal necessary to prevent eutrophication in surface water.
- Removal can accomplished by:
 - chemical precipitation and sedimentation
 - enhanced biological uptake
- Here we will focus on chemical removal using aluminum compounds.
 - Aluminum Sulfate Alum: Al₂(SO4)₃
 - Aluminum Chloride: AlCl₃

• 2017 Draft Aquatic Life Criteria & 1998 Criteria:

Table 1: 2017 Draft Aluminum Aquatic Life Criteria Compared to Current 1988 Criteria^a

	Freshwater Acute (1 day, total	Freshwater Chronic (4-day, total
Version	aluminum)	aluminum)
2017 Draft AWQC Criteria (MLR normalized to pH = 7, hardness = 100 mg/L, DOC = 1 mg/L)	1,400 μg/L	390 μg/L
1988 AWQC Criteria (pH 6.5 – 9.0, across all hardness and DOC ranges)	750 μg/L	87 μg/L

^a Values are recommended not to be exceeded more than once every three years on average.

Note: Values will be different under differing water chemistry conditions as identified in this document.

• 2017 Draft Aquatic Life Criteria & 1998 Criteria:

Table 1: 2017 Draft Aluminum Aquatic Life Criteria Compared to Current 1988 Criteria^a

	Freshwater Acute	Freshwater Chronic
	(1 day, total	(4-day, total
Version	aluminum)	aluminum)
2017 Draft AWQC Criteria (MLR normalized to pH = 7, hardness = 100 mg/L, DOC = 1 mg/L)	1,400 μg/L	390 μg/L
1988 AWQC Criteria (pH 6.5 – 9.0, across all hardness and DOC ranges)	750 μg/L	87 μg/L

^a Values are recommended not to be exceeded more than once every three years on average.

Note: Values will be different under differing water chemistry conditions as identified in this document.

Contaminant In 1	n Water As	Secondary Maximum Contaminant Level
Aluminum (Al)	A 13+	US EPA SMCL* = 0.05 to 0.2 mg/L WHO⁺ Guideline = 0.1 to 0.2 mg/L Health Canada OG** = 0.1 to 0.2 mg/L

• 2017 Draft Aquatic Life Criteria & 1998 Criteria:

Table 1: 2017 Draft Aluminum Aquatic Life Criteria Compared to Current 1988 Criteria^a

	Freshwater Acute	Freshwater Chronic
	(1 day, total	(4-day, total
Version	aluminum)	aluminum)
2017 Draft AWQC Criteria (MLR normalized to pH = 7, hardness = 100 mg/L, DOC = 1 mg/L)	1,400 μg/L	390 μg/L
1988 AWQC Criteria (pH 6.5 – 9.0, across all hardness and DOC ranges)	750 μg/L	87 μg/L

^a Values are recommended not to be exceeded more than once every three years on average.

Note: Values will be different under differing water chemistry conditions as identified in this document.

Contaminant	In Water As	Secondary Maximum Contaminant Level		
		US EPA SMCL* = 0.05 to 0.2 mg/L 50-200 ug/L		
Aluminum (Al)		WHO [†] Guideline = 0.1 to 0.2 mg/L		
	Al(OH)₃	Health Canada OG** = 0.1 to 0.2 mg/L		
	9			

• 2017 Draft Aquatic Life Criteria & 1998 Criteria:

Table 1: 2017 Draft Aluminum Aquatic Life Criteria Compared to Current 1988 Criteria^a

	Freshwater Acute	Freshwater Chronic
	(1 day, total	(4-day, total
Version	aluminum)	aluminum)
2017 Draft AWQC Criteria (MLR normalized to pH = 7, hardness = 100 mg/L, DOC = 1 mg/L)	1,400 μg/L	390 μg/L
1988 AWQC Criteria (pH 6.5 – 9.0, across all hardness and DOC ranges)	750 μg/L	87 μg/L

^a Values are recommended not to be exceeded more than once every three years on average.

Note: Values will be different under differing water chemistry conditions as identified in this document.

Some high quality waters contain more than 87ug/L

Aluminum

 $\mathrm{Al^{3+}+H_nPO_4^{3-n}\leftrightarrow AlPO_4+nH^+}$

1:1 molar ratio, but in reality usage is 9.59 lbs Alum / 1lb P.

Phosphorus or Aluminum that is the question

Which rules?

How does a municipality comply?

- Spend lots of \$\$\$ to remove aluminum
- Appeal permit
- Use alternative coagulants
- Look to develop an alternative



City of Manchester, NH Al³⁺ Study - 2011

- WWTP Background
 - 1975 26 mgd (original)
 - 1994 34 mgd (upgrade)
 - 1999 83 mgd (CSO bypass)
 - 60% combined system
 - Discharge to Merrimack River

Merrimack River Drainage Basin

Merrimack River Drainage Basin

• Pemigewasset & Winnipesaukee

Rivers, headwaters

- 78 miles in NH
- 50 miles in MA
- 5,000 sq mile watershed

WET Toxicity Testing Report Results for Aluminum

Year 2005	Effluent Al	River Al	Difference
1st QTR 2005	100 ppb	110 ppb	10 ppb – higher upstream
2nd QTR 2005	19 ppb	34 ppb	15 ppb – higher upstream
3rd QTR 2005	<10 ppb	54 ppb	44 ppb – higher upstream
4th QTR 2005	74 ppb	210 ppb	136 ppb–higher upstream

WET Toxicity Testing Report Results for Aluminum

Year 2006	Effluent Al	River Al	Difference
1st QTR 2006	97 ppb	320 ppb	223 ppb – higher upstream
2nd QTR 2006	110 ppb	290 ppb	180 ppb – higher upstream
3rd QTR 2006	510 ppb	<10 ppb	500 ppb - higher effluent
4th QTR 2006	<10 ppb	460 ppb	450 ppb – higher upstream

Historical WET Findings

- More Aluminum in river than effluent
- Significantly higher at times
- Alum used in WTPs
- source water contribution

Sampling Program

- Start June 2009
- End May 2010
- Captured seasonal cycle
- Logged cfs & rain
- 500 tests for ASA, pH, conductivity & turbidity
- 100 tests for TDS, hardness & TRA

Feeder Ponds in White Mts Aluminum Contribution

- 7% of samples below 50 ug/l
- 93% of samples between 100 ug/l and 300 ug/l $\,$
- No Stormwater, or human activity
- "Natural Occurrence"

Feeder Ponds Aluminum Concentration

- 303(d) impaired list includes aluminum
- Reason is 'Natural Occurrence'
- This condition exists in most feeder brooks north of Franklin, NH

Report Findings

- Al³⁺ highest in feeder ponds
- Al^{3+} concentration dilutes out in travel down river
- Al³⁺ concentration higher above WWTP outfall
- WWTP effluent dilutes Al³⁺ concentration by 3%
- Al³⁺ concentration is directly proportional to 7Q10
 - Lower cfs = lower Al^{3+}

Presentation Summary

- WWTP's can do anything with appropriate resources
 - But as an industry do we have the \$?
- WWTPs cannot "just" change their process
 - Consider implications of:
 - Cost
 - Time to completion
 - O&M
 - Tim to the next permit

Richard Friesner, Ph.D. www.neiwpcc.org rfriesner@neiwpcc.org (978) 349-2506

Lake Winnipesaukee!!!

111111111