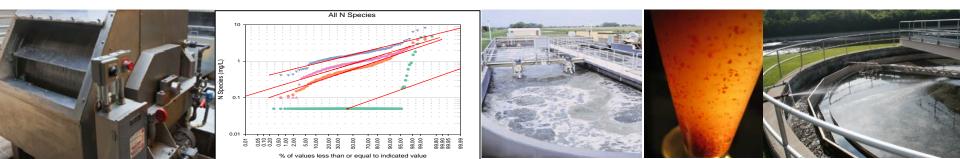


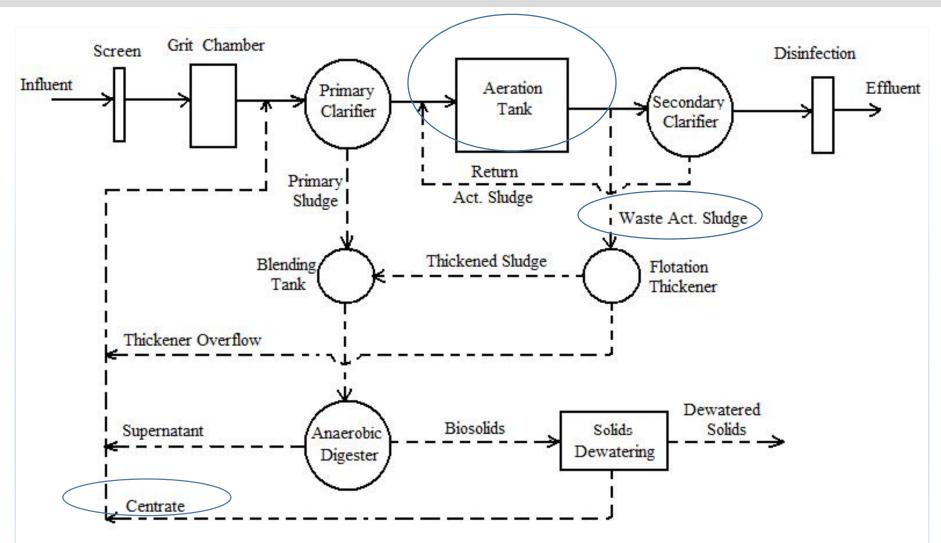
Innovative Nutrient Removal Technologies: Case Studies of Intensified or Enhanced Treatment


ACWA Nutrients Permitting Workshop

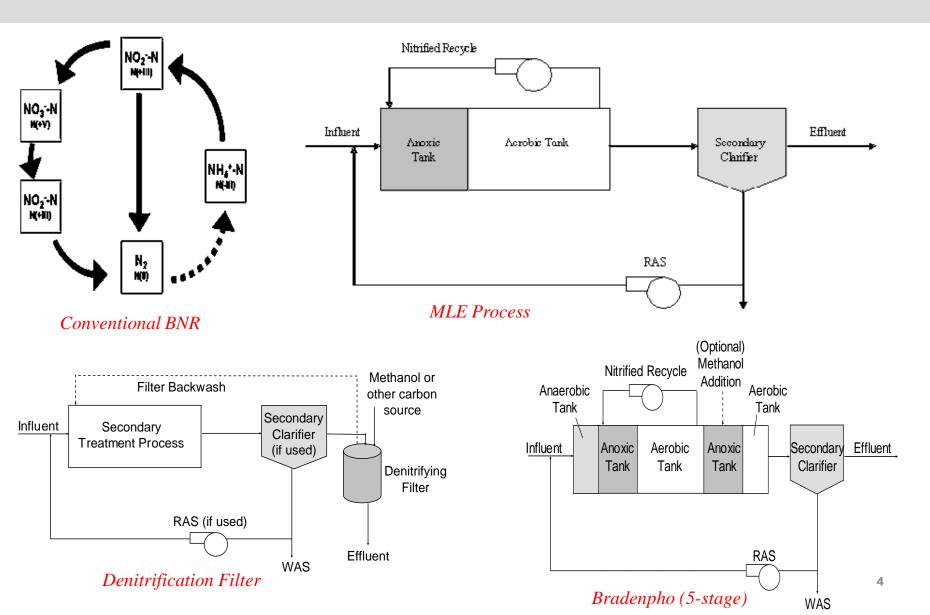
Columbus, OH

June 6, 2018

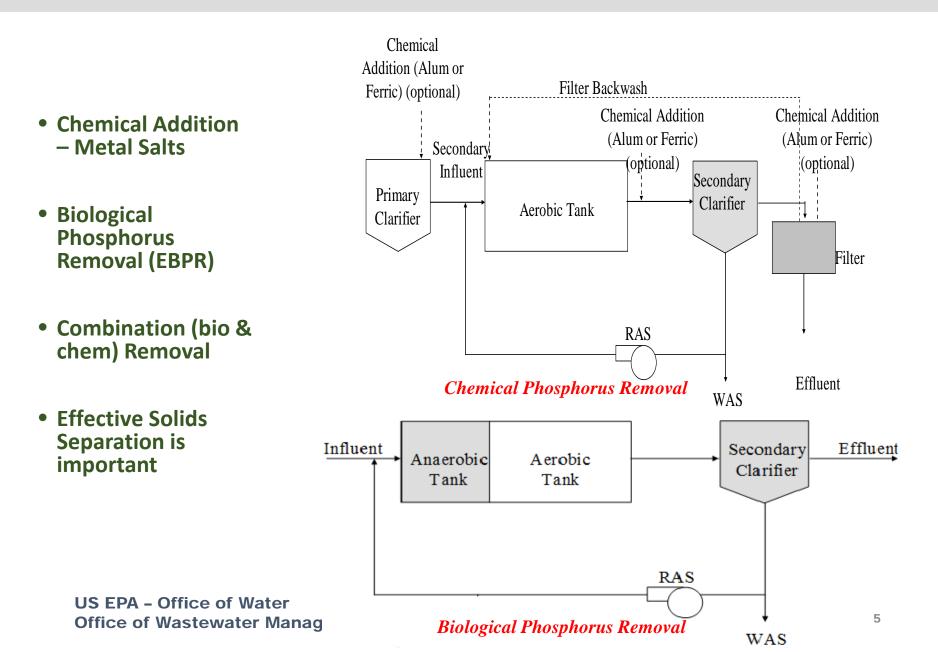
Phil Zahreddine


EPA Office of Wastewater Management

Presentation Outline


- Nutrient Removal
 - Conventional Removal Mechanisms
 - Innovation
- Previous EPA Reports on Nutrient Removal Technologies
- Innovative Nutrient Removal technologies Case Studies
 - Purpose & Scope
 - Process Performance and Site-specific Impact Analysis
 - Statistical Analysis
- Selected Processes and facilities
 - Removal Mechanisms
 - Expected Benefits

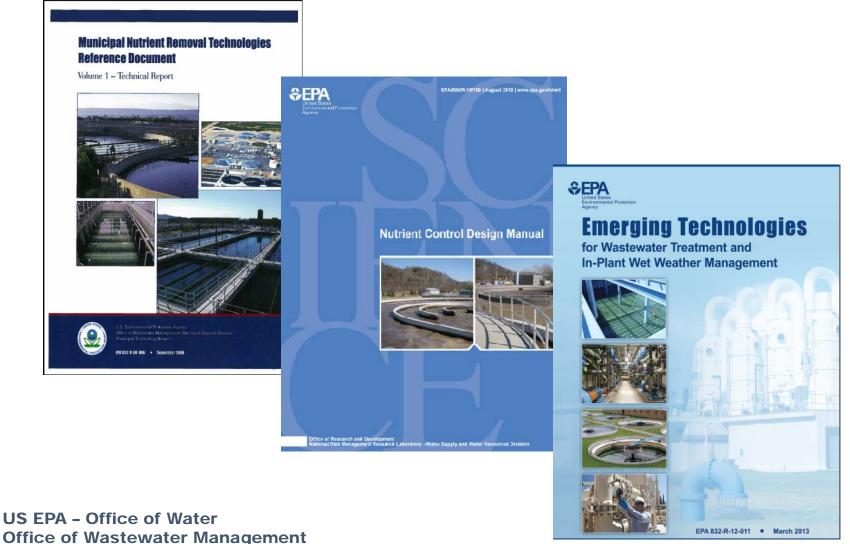
Typical Secondary Treatment Plant Trains



US EPA – OTTICE OT WATER Office of Wastewater Management

Conventional Biological Nitrogen Removal & Process Examples

Conventional Phosphorus Removal


Innovative Nutrient Removal

- Improved and more reliable performance, reduced costs
- Reduction in sidestream nutrient loads
- Reduction of expensive chemical consumption

 External carbon for PAOs and denitrifiers
 Metal salts for Chemical phosphorus removal
 Alkalinity
- Reduction of sludge production (& associated processing and utilization/disposal costs)
- Reduction of energy consumption
- Footprint reduction
- Quick implementation to meet much lower limits
- Efficacy in cold climates

US EPA – Office of Water 6 Office of Wastewater Management

Previous EPA Reports on Nutrient Removal Technologies

Innovative Nutrient Removal Technology Case Studies - Purpose

- In-house study to provide seven to nine detailed case studies of recent innovative nutrient removal processes for Nitrogen or Phosphorus removal.
- Includes innovative processes or significant enhancements to conventional processes.
- Focus on nutrient removal <u>performance and variability</u>, <u>site-specific factors</u> impacting performance, and <u>lessons learned</u>.
- Audience: <u>Regulators</u> and <u>Utilities</u>.
- Supplement OW's efforts to assist Regions and States in implementing nutrient standards.
- Inform utility decision-making on process selection.

Study recently started, data shown is preliminary draft, currently under review.

US EPA – Office of Water 8 Office of Wastewater Management

Innovative Nutrient Removal Technology Case Studies - Scope

- Describe the innovations and their benefits.
- Perform a detailed statistical analysis of performance and variability.

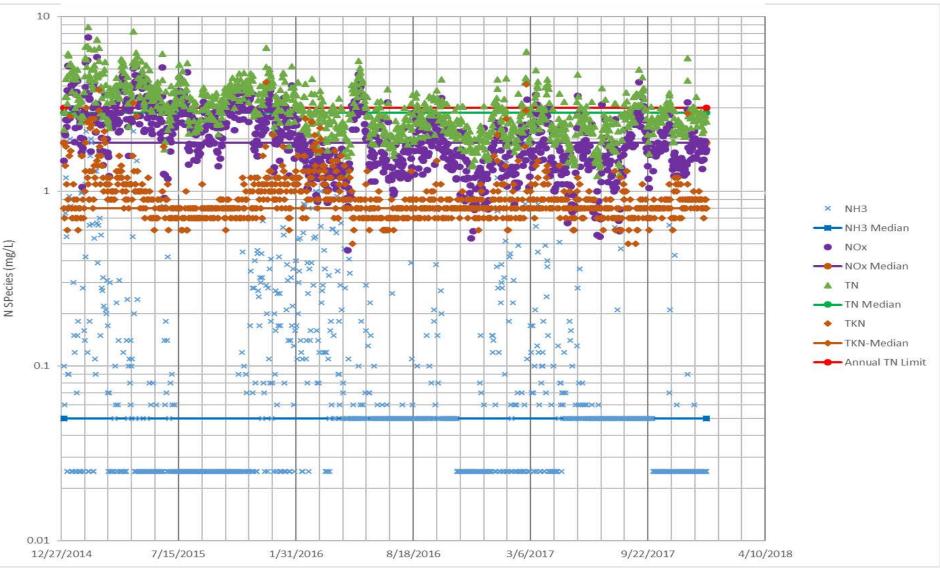
 Analysis of a minimum of 1 year (preferably 3 years) of nutrient species monitoring data (Plant and process influent, plant and process effluent, other parameters as needed for case study).

- Assess operational and existing infrastructure factors that impacted performance positively or negatively such as process control, design flexibility, recycle load management, wet weather flow management, and others where applicable.
- Conduct external peer review and share document with stakeholders.

US EPA – Office of Water ⁹ Office of Wastewater Management

Selected Technologies

Process	Facility	Process	Facility
Side-stream deammonification process - DEMON ®	Alex Renew AWRRF, Alexandria, VA	Submerged Attached Growth Reactor (SAGR [®]) for Lagoon Low N	Kingsley, IA
S2EBPR - Side-stream RAS and primary fermentate addition for enhanced biological phosphorus removal	Westside Regional Facility, West Kelowna, BC	BioMag [®] magnetite- ballasted mixed liquor process	Mystic WPCF, Stonington, Connecticut
WASSTRIP [®] Phosphorus Release with OSTARA Pearl [®] nutrient recovery	F. Wayne Hill Water Resources Center, Gwinnett County, GA	Side-stream deammonification process - ANITAMox ®	South Durham WRF, Durham, North Carolina
Very Low TN 4- Bardenpho Modification	Town of Hillsborough, NC	Others?	10



Statistical Analysis Uses

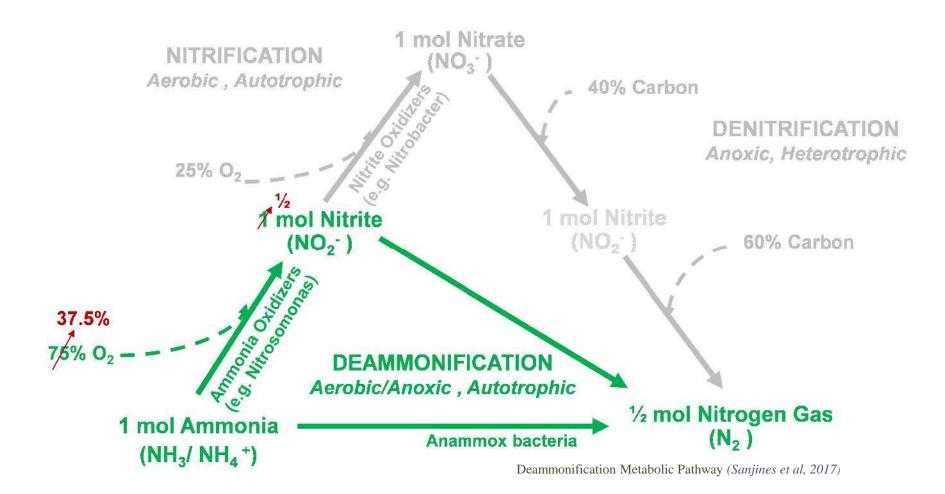
- Understanding achievable performance under conditions it was achieved.
- Determine the variability of the technology to achieve a target effluent limit (useful for facility design features that increase reliability)
- Evaluate the potential risk of exceeding permit limits number of times per permit cycle, etc.
- Provide consistent parameters for process performance assessment.

Statistical Analysis - Daily series

Daily N Species Values

Study recently started, all data shown are preliminary draft, currently under review

Statistical Analysis – Cumulative Probability

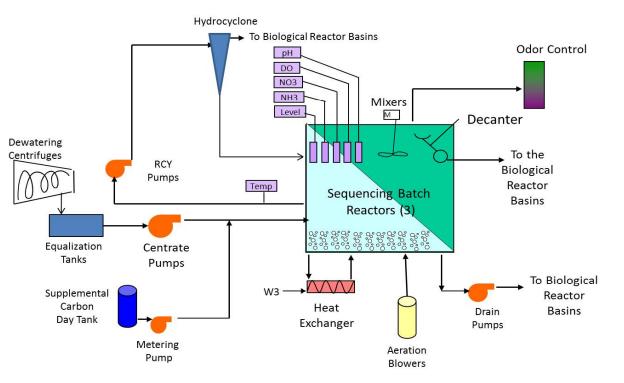

Study recently started, all data shown are preliminary draft, currently under review

Statistical Analysis Example Summary Stats & Probability

		NH3	Daily	NH3	Weekly	NH3 Rolling		NH3 Monthly	NH3 Annua	al
		Da	ata	Data		30-day Average		Averages	Average	
	n 1096		156		1067		36	25		
	Mean 0.146		0.147		0.145		0.148	0.143		
Geo	Beometric Mean 0.063 0.083		.083	0.097		0.098	0.140			
Standard Dev.		0.3	308	8 0.190		0.147		0.146	.146 0.031	
	CV	2.	101	1.	.294		1.013	0.989 0.214		
	Skew	Skew 4.765 2.458 2.028		2.028	1.869	-0.080				
Ν	Minimum		025	0.	0.025		0.025	0.025	0.103	
N	laximum	3.3	300	0.	.999		0.793	0.687	0.192	
		Nł	13 NH		3	NH3	NH3	NH3	_	
	Probability n 3.84 (14d)		Da	Daily Weel Data Dat		kly Rolling		Monthly	Annual	
			Da			а	30-day Average	Averages	Average	
			10	96	6 156		1067	36	25	
			0.	0.03		3 0.03		0.03	0.10	
	50		0.	05	0.0	6 0.08		0.09	0.15	
	90		0.3	36	0.37		0.34	0.35	0.18	
	95		0.	.65 0.5		7 0.48		0.39	0.18	
	99		1.	1.61 0.8		9	0.74	0.59	0.19	
	95/50		13.	3.05 9.9		0 5.74		4.39	1.22	
	3.84/50		0.	50 0.44		4 0.30		0.28	0.69	
									h	

Study recently started, all data shown are preliminary draft, currently under review

Deammonification



US EPA – Office of Water Office of Wastewater Management

Alexandria, VA Sidestream Deammonification - DEMON®

Plant Description:

- 54 mgd average annual flow
- BNR either in MLE or step-feed modes. Methanol Addition
- Nutrient limits: 3.0 mg/L TN and 0.18 mg/L TP (Annual Avg.)

Schematic of Deammonification Reactor at AlexRenew (Sanjines et al, 2017)

Process Description:

Centrate pre-treatment (CPT) system uses the DEMON[®] sidestream deammonification process to remove anaerobically-digested sludge centrate nitrogen.

AlexRenew ARRF, Alexandria, VA Sidestream Deammonification - DEMON®

> Potential Performance & Benefits

✓ Reliable nitrogen removal from centrate

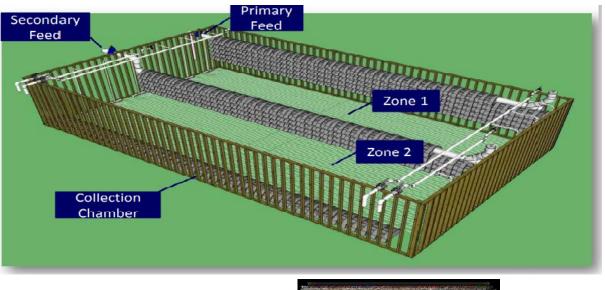
✓ Significant reduction of ammonia loading to mainstream BNR

✓ Significant reduction in mainstream carbon (methanol) addition

✓ Significant reduction in aeration/energy consumption

✓ Significant reduction in sludge production

Kingsley Sanitary Treatment Plant City of Kingsley, IA Submerged Attached Growth reactor (SAGR [®])


Plant Description:

O.3 MGD design flow 3-cell aerated lagoon followed by a 2-stage SAGR process.

Ammonia-N limit: Jan. high of 11.9 mg/l (30-day avg.) and 20.9 mg/l (daily max), to as low as 2.4 and 3.1 mg/l respectively Aug.

Objective: <1/<5 mg/l summer/winter</p>

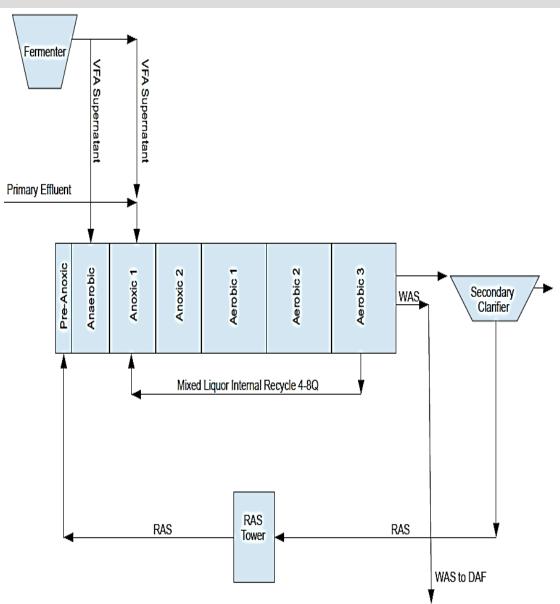
Project Description:

- ✓ SAGR process gravel bed with evenly distributed wastewater flow across the width of the cell. Diffuser aeration throughout the floor.
- ✓ Step Feed procedure used to develop additional bacteria in the secondary bed zone to maintain full treatment through the duration of cold weather
 20

Kingsley STP, Kingsley, IA SAGR

Potential Performance & Benefits

- ✓ Effective ammonia removal to low levels even at very low temperatures.
- ✓ low operational complexity and costs compared to mechanical plant conversion.
- ✓ Potential other benefits in effluent BOD5 and TSS reduction.
- ✓ Potential supplementary reduction in E-coli bacteria supporting existing disinfection.


Westside Regional Wastewater Treatment Facility Regional District of Central Okanagan, Kelowna, BC Sidestream RAS Fermentation (with Primary Fermentate Addition)

Plant Description:

- 4.4 MGD design Flow –
 TP annual avg. limit: 0.20
 mg/l, TN < 6 mg/L Daily
- MLE BNR process with sidestream enhanced biological phosphorus removal, Cloth Filters

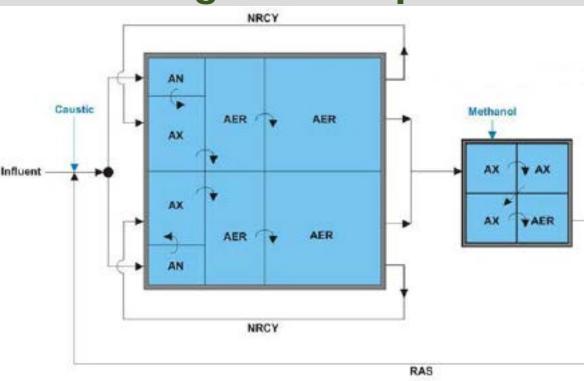
Process Description:

 S2EBPR: Primary sludge fermentation with RAS anoxic pretreatment (5-10 min) followed by anaerobic sidestream treatment with a portion of primary fermentate. Remaining fermentate fed to mainstream anoxic zone.

Westside RWTF, Kelowna, BC

S2EBPR - Sidestream RAS Fermentation (with PS Fermentate Addition)

> Potential Performance & Benefits


- ✓ Improved P removal and more stable operation (i.e. effluentortho-P consistently low).
 - Potential positive impact of S2EBPR extended anaerobic HRT (e.g. 16-48 hours) and continuous substrate feed on higher levels and composition of VFAs favoring PAOs over GAOs.
 - Potential positive impact of lower ORP on abundance of specific fermenting PAOs. (Gu et. al, 2018, research in progress)
- ✓ Positive impact on demand for carbon (VFAs) between biological nitrogen (denitrifiers) and phosphorus removal (PAOs) processes.
- \checkmark Significant reduction in external carbon addition
- ✓ Significant reduction in metal salt (Alum) addition for P-trim.
- ✓ Reduction in RAS retention time compared to RAS only anaerobic zone

US EPA – Office of Water Office of Wastewater Management

Hillsborough Wastewater Treatment Plant Hillsborough, NC Low TN modification – 5-Stage Bardenpho BNR

Plant Description:

- Permitted plant capacity:
 3.0 MGD
- ≻5-Stage BNR, Denite filters
- ≻0.99 MGD Avg. Flow (2017)
- ➢ Design flow: 2.4 MGD
- TN Permit Limit: 10,422 lbs/yr (1.43 mg/l at design flow)
- TP: 2.0 mg/l (quarterly avg.)

Process Modification Description:

- Modified original (BIOWIN verified) reactors volumes, hydraulic retention times, and nutrient recycle flow
- Based on total flow leaving each zone (i.e. only 1st anoxic zone includes nutrient recycle (NRCY) flow (and not anaerobic, aerobic and 2nd anoxic zones)
- > To ensure anoxic zone did not reach an anaerobic state
 - Resulted in 900% NRCY

Hillsborough WWTP, Hillsborough, NC Low TN modification – 5-Stage Bardenpho BNR

D. L. H.

ORI	GINAL

	Zone	Volume (MG)	% of Volume Allocated	NRCY % of Inf	Detention Time (hours)	Volume (MG)	% of Volume Allocated	NRCY % of Inf	Detention Time (hours)	
	AN	0.125	6%		2	0.125	6%		2.4	MODIFIED
>	1st AX	0.375	17%	200%	2.5	0.875	39%	900%	2.2	
	AE	1.5	67%		24.4	1	44%		18.8	$\langle \dots \rangle$
	2nd AX	0.1875	8%		3	0.1875	8%		2.3	
	Reair	0.0625	3%		1	0.0625	3%		0.8	
	Total	2.25	100%		29.2	2.25	100%		39.2	

Original Reactor Modifications (Mahagan & Bilyk, 2016)

Detention

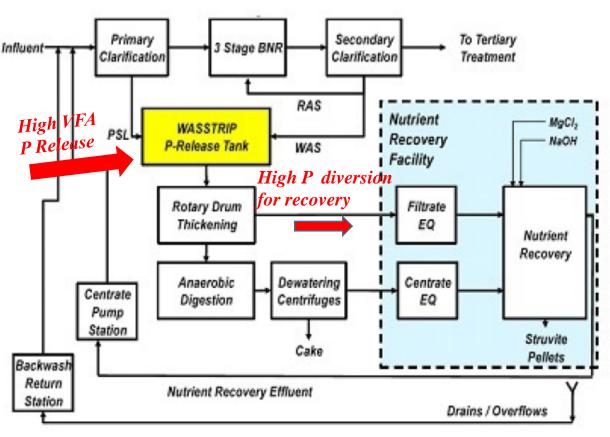
Potential Performance & Benefits

01 . 6

✓ Significant reduction in effluent TN limits

✓ Mostly Stable operation

✓ Significant reduction in carbon (methanol) addition


F. Wayne Hill Water Resources Center Gwinnett County, GA WASSTRIP [®] & OSTARA Pearl[®]

Plant Description:

60 MGD plant

- EBPR and chemical trim to meet a TP limit of 0.08 mg/L
- ✓ Receives sludge from22 mgd Yellow River WRF (significant additional phosphorus loading and recycle).

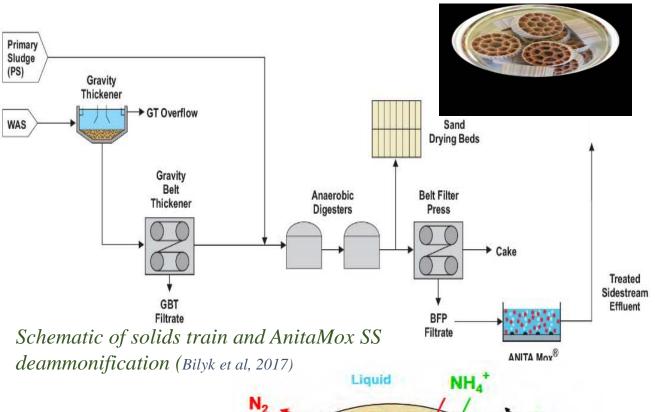
Process Description:

⁽Adapted from Latimer et al, 2017)

Implement OSTARA Pearl[®] struvite precipitation for P (and some N) recovery and prevent struvite deposits in the dewatering centrifuges and upstream of dewatering

F. Wayne Hill WRC WASSTRIP & OSTARA Pearl®

> Potential Performance & Benefits


- ✓ Resolution of nuisance struvite formation and associated need for high pressure blasting of centrate pipes.
- ✓ WASSTRIP tank (PS &WAS) is achieving good P-release with relatively short HRT.
- ✓ Increased Nutrient recovery (PO4-P and TP)
- ✓ Significant reduction in Alum addition to achieve very low effluent TP.
- ✓ Lower and more consistent effluent TP
- ✓ Improvement in dewatered biosolids cake solids content (likely impact of increase in Monovalent to Divalent Cation Ratio)

US EPA – Office of Water Office of Wastewater Management

South Durham WRF - Durham, NC Sidestream Deammonification – AnitaMox® MBBR

Plant Description:

- > 20 mgd design flow
- ≻5-stage BNR
- Nutrient limits: equiv.
 3.0 mg/L TN and 0.18 mg/L TP (@ design flow)
- Repurposed two abandoned aerobic digesters for AnitaMox

Project Description:

AnitaMox sidestream deammonification process to remove anaerobically-digested sludge filtrate nitrogen.

South Durham WRF - Durham, NC Sidestream Deammonification – AnitaMox MBBR

> Potential Performance & Benefits

✓ Significant nitrogen removal from filtrate (Ammonia and TN).

✓ Significant reduction of ammonia loading to mainstream BNR.

✓ Significant reduction in aeration/energy and sludge production.

✓ Reduction in final effluent TN.

✓ Most likely tolerates higher DO and nitrite levels (> 5mg/l).

Contact Information

Phil Zahreddine

(202) 564-0587 Zahreddine.Phil@epa.gov