

NC's Watershed-Based Approach to Nutrients Permitting

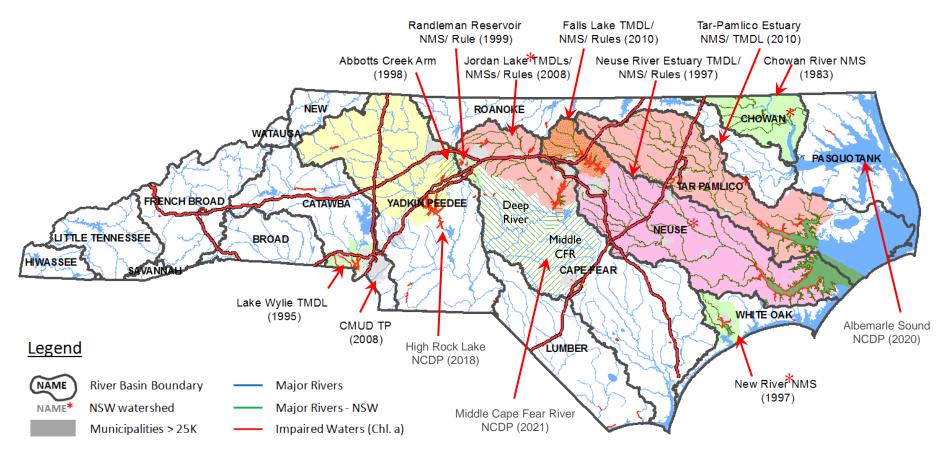
2017 ACWA Nutrients Permitting Workshop - Boise, ID December 5-7, 2017

Mike Templeton Water Quality Permitting Section NC DEQ/ DWR

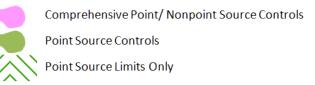
Regulatory Action - 1979

- Chlorophyll-a standard
 - Indirect measurement of algal biomass
 - $\, ^{\rm o} \,$ 40 $\mu g/L$ statewide, except 15 $\mu g/L$ Trout
- NSW Supplemental Classification
 - Waters "experiencing or ... subject to excessive growths of ... vegetation [which] impair the use of the water for its best usage"
 - Applies to affected waters and upstream tribs
 - Requires <u>nutrient management strategy</u>
- NCDP

Chowan River, Late 1970s



Chowan River


Classified basin NSW due to chlorophyll-a levels Conducted load/ response analysis Nutrient Management Strategy adopted (1983): • Point sources – cease discharge or meet 3 & 1 mg/L limits for N & P

Watershed-Based Nutrient Controls

Nutrient Strategy Type

2017 ACWA Nutrients Permitting Workshop - Boise, ID

Existing Nutrient Strategies

January 4, 2016

Year	Waterbody	Management Approach/ Mechanism	Nitrogen Controls	Phosphorus Controls	Facilities Affected	
1983	Chowan River	NMS/ Basin Plan	Eliminate discharges, where feasible; 3.0 mg/L limits	Eliminate discharges, where feasible; 1.0 mg/L limits	1 POTW w/ 3&1 N&P limits	
1992	Tar-Pamlico estuary	NMS/ Phased TMDL	Group cap. Individual limits set in 2016, subject to group compliance	Group cap. Individual limits set in 2016, subject to group compliance	15 POTWs w/ mass N&P limits	
1995	Lake Wylie	TMDL	Mass limits typ. ≡ 6 mg/L @ Q _{pmt}	Mass limits typ. ≡ 1 mg/L @ Q _{pmt}	5 major POTWs, 3 industry	
1997	New River estuary	NMS/ Phased TMDL	Case-by-case limits for WWTPs \geq 1.0 MGD, similar to Camp Lejeune (5.0 mg/L (S), 10.0 (W))	2.0 mg/L limits (S&W)	1 major POTW, 1 federal, 11 minor 100% domestic.	
1997	Neuse River estuary	NMS/ Phased TMDL	Mass limits for WWTPs \geq 0.5 MGD, equiv. to 3.7/ 5.5 mg/L N for POTWs; group compliance option	2.0 mg/L limit, depending on size and location	23 POTWs, 4 industry, 5 minor domestic	
1997	High Rock Lake, Abbotts Creek Arm	NMS	-	Mass seasonal limits ≡ 0.5 mg/L (S), 1.0 mg/L (W)	3 major POTWs	
1997	All NSW without calibrated, nutrient- sensitive model (HB515)	Default nutrient limits in absence of NMS/ TMDL	Mass limits for existing WWTPs \geq 0.5 MGD, equiv. to 5.5 mg/L N @ Q_{pmt} in waters classified NSW	Mass limits for existing WWTPs ≥ 0.5 MGD, equiv. to 2.0 mg/L N @ Q _{pmt} when classified NSW	-	
1999	Randleman Reservoir	NMS	-	TP cap on existing major POTW; no new/ expanding WWTPs	1 major POTW	
2000	Deep River, Randleman Res. to Carbonton Dam	BPJ/ Basin Plan	-	1 mg/L P limits for new and expanding ≥ 1.0 MGD; elsewhere, no increase in N and P mass loads	(2 POTWs w/ pre-existing TP limits)	
2000	Cape Fear River, Jordan Dam to Buckhorn Dam	BPJ/ Basin Plan	-	No increase in N and P mass loads	-	
2000	Cape Fear River, Buckhorn Dam to L&D#3	BPJ/ Basin Plan	Mass summer limits \equiv 6 mg/L @ Q _{pmt} for new and expanding	Mass summer ≡ 1 mg/L @ Q _{pmt} for new and expanding	1 major POTW	
2008	Jordan Reservoir - Haw River Arm	NMS/ Phased TMDL	Mass limits for WWTPs \geq 0.1 MGD, equiv. to 5.3 mg/L N (2016)	Mass limits for WWTPs \geq 0.1 MGD, equiv. to 0.66 mg/L P	8 major POTWs, 1 major industry, 1 minor domestic, all \geq 0.1 MGD	
2008	Jordan Reservoir - Upper New Hope Arm	NMS/ Phased TMDL	Mass limits for WWTPs \geq 0.1 MGD, equiv. to 3.0 mg/L N (2016)	Mass limits for WWTPs \geq 0.1 MGD, equiv. to 0.23 mg/L P	3 major POTWs, 1 minor domestic, all <u>></u> 0.1 MGD	
2008	Jordan Reservoir - Lower New Hope Arm	NMS/ Phased TMDL	Mass limits for WWTPs \geq 0.1 MGD, equiv. to 5.3 mg/L N (2016)	Mass limits for WWTPs \geq 0.1 MGD, equiv. to 0.37 mg/L P	1 minor domestic \geq 0.1 MGD	
2010	Falls Lake	NMS	Staged limits for WWTPs \geq 0.1 MGD; final mass limits \equiv 1.1 mg/L TN in Upper (2035); conc. limits $=$ 3.0 mg/L in Lower (2016)	Staged limits for WWTPs \geq 0.1 MGD; final mass limits \equiv 0.06 mg/L TP in Upper (2035); conc. limits $=$ 0.3 mg/L in Lower (2016)	3 major POTWs in Upper, 2 minor domestic in Lower	

Evolution of Nutrient Strategies

<u>Earlier</u>

- Point sources
- Load/ Response
- Tech/BPJ-based req'ts
- N or P
- Agency decisions

- 'All' sources
- Nutrient-sensitive models

Later

- WQ-based
- \Rightarrow N, P, or both (co-limiting)
- ⇒ Stakeholder collaboration

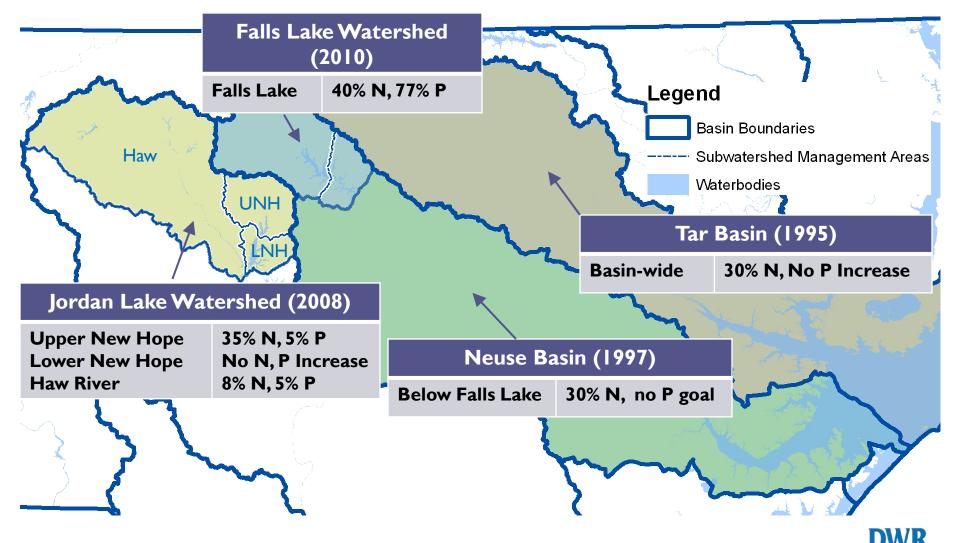
Basic Steps in Strategy Development

- Identify the problem
- Invite/ promote stakeholder participation need buy-in at all stages to succeed
- Collect data to support modeling (2-year baseline)
- Model to determine <u>watershed-specific nutrient</u> reduction targets (same for PS & NPS)
- Formulate strategy to achieve those reductions
- Consider opportunities for increased flexibility, cost-effectiveness
- Develop implementing rules

Tar-Pamlico & Neuse River Estuaries

More comprehensive approach to nutrient controls

- Wastewater discharges
- Agriculture
- Riparian areas protection
- Fertilizer management (commercial)
- Urban stormwater (new development)
- Nutrient offsets
- NC Ag Cost Share funds incentives (Tar-Pamlico)


Jordan & Falls Lakes

Further expansion of nutrient controls

- Existing development (local governments)
- Trading/ removal credits
- Adaptive management

Nutrient Reduction Targets

12

2017 ACWA Nutrients Permitting Workshop - Boise, ID

Point Source Strategies

- Existing dischargers receive nutrient allocations
 - Based on PS baseline and reduction targets/WLAs
 - Small dischargers receive tech-based allocations
 - Large dischargers receive remaining allocations in proportion to max permitted flows
 - Allocations are calendar-year mass loads
- Large dischargers (<a>0.5 or 0.1 MGD) receive limits; smaller dischargers receive allocations, no limits
- Limits are annual mass limits
- Limits are effective Jan. I and locked in for the full calendar year

TN, TP Discharge Requirements

Watershed	Mass TN Limits Equivalent To:	Mass TP Limits Equivalent To:	Facilities Affected			
Tar-Pamlico Estuary	6.85 mg/L	0.92 mg/L	15			
Neuse River Estuary	3.75 to 5.5 mg/L 6.7 mg/L (no limit)	2.0 mg/L (conc.)	32 ≥ 0.5MGD 37 < 0.5 MGD			
Jordan Lake •Haw River •Upper New Hope •Lower New Hope	5.39 mg/L 3.04 mg/L 5.35 mg/L 12.0 mg/L (no limit)	0.66 mg/L 0.37 mg/L 0.23 mg/L 2.0 mg/L (no limit)	9 ≥ 0.1 MGD 4 ≥ 0.1 MGD 1 ≥ 0.1 MGD 33 < 0.1 MGD			
Falls Lake (Stage 1) (Stage II)	3.0 - 3.6 mg/L* 1.13 mg/L 12.0 mg/L (no limit)	0.33 - 0.46 mg/L* 0.06 mg/L I 2.0 mg/L (no limit)	3 <u>></u> 0.1 MGD 3 < 0.1 MGD			
*At current flows + 10%						

Point Source Strategies (cont.)

- New & expanding discharges
- Regionalization incentive
- Group compliance option
- Offset payments (compliance group only)
- Localized impacts ("hot spots")

Transport Considerations

- Allocations & limits can be expressed as discharge loads and delivered loads
 - Discharge loads for end-of-pipe limits
 - Delivered loads for TMDL compliance
- Transport factors are determined during modeling, used to convert from discharge to delivered values and back
- Critical in trading

Trading Options

- Trading can include:
 - Purchase of allocation from an existing discharger (PS-PS)
 - Purchase of offsets from mitigation banker or similar source (PS-NPS In-Lieu Fees)
- Transactions are conducted in terms of delivered loads to ensure no exceedance of PS WLAs.
- Transactions must not result in "hot spots"

Group Compliance Approach

- Alternate approach to meeting PS nutrient reductions
- Voluntary
- Dischargers form a not-for-profit association and are subject to combined nutrient limits
- Association and members are co-permittees to a new group permit; individual permits remain in effect
- Provides dischargers with flexibility in meeting nutrient requirements
- Promotes collaboration and technical assistance among members

Group Compliance Approach

• Individual permits

- Remain in effect
- Members deemed "in compliance" with mass nutrient limits

• <u>Group permit</u>

- New NPDES permit for Association and members
- Governs mass nutrient limits and group reporting only

Group Permit

- Contains member roster and individual allocations (discharge <u>and</u> delivered)
- Identifies Association's nutrient limits: sum of members' delivered allocation
- All limits and transactions are expressed in terms of <u>delivered allocation</u>
- Limits are annual mass limits
- Limits in effect on Jan. I are in effect for the full calendar year

Group Permit – Compliance

- Limits are revised annually, as needed, to reflect changes in membership or allocations
- Allocation transfers (trades) must first be incorporated into individual permits (major mods) in order to:
 - Address potential local impacts
 - Allow for public review and comment
- Changes in members' allocations in the group permit are then made by minor mod

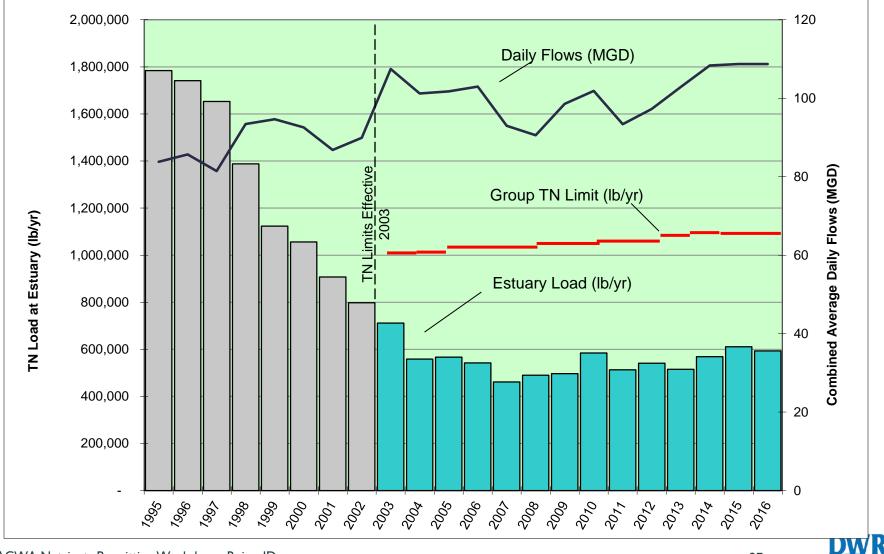
Group Permit - Compliance

- If Association meets its nutrient limit(s),
 - Association is in compliance, and
 - all members are deemed in compliance
- If Association exceeds a nutrient limit,
 - Association is in violation of its permit and must make offset payment, and
 - members > individual allocations are in violation
 - Association and noncompliant members are subject to enforcement actions

So how's that working? ...

Chowan Basin Strategy

- "Nutrient Sensitive Waters" 1979
- Mostly point source improvements
- By 1990:
 - ➤ 20% ^① nitrogen loads


 - Reduced algal blooms

Tar-Pamlico & Neuse Estuary Strategies

- Developed strategies/TMDLs/ rules
- Rules fully implemented
- Substantial progress by PSs and NPSs

NRCA Performance

2017 ACWA Nutrients Permitting Workshop - Boise, ID

27

Division of Water Resource:

Best Performers 2016

POTWs with 2016 Effluent TN < 3.0 mg/L

			Ann. Avg. Nitrogen	Permitted Flow	Ann. Avg. Flow	% Capacity
Permit	Owner Name	Facility Name	(mg/L)	(MGD)	(MGD)	
NC0029572	Town of Farmville	Farmville WWTP	1.22	3.50	2.003	57%
NC0026433	Town of Hillsborough	Hillsborough WWTP	1.45	3.00	1.060	35%
NC0032077	Contentnea MSD	Contentnea MSD WWTP	1.59	2.85	2.137	75%
NC0079316	City of Raleigh	Little Creek WWTP	1.79	2.20	0.805	37%
NC0065102	Town of Cary	South Cary WRF	2.10	16.00	5.369	34%
NC0048879	Town of Cary	North Cary WRF	2.26	12.00	5.659	47%
NC0023906	City of Wilson	Wilson WWTP	2.26	14.00	9.497	68%
NC0026824	South Granville W&SA	SGWASA WWTP	2.29	5.50	2.019	37%
NC0023949	City of Goldsboro	Goldsboro WRF	2.34	17.60	9.096	52%
NC0024236	City of Kinston	Kinston Regional WRF	2.43	11.85	6.278	53%
NC0064891	Town of Kenly	Kenly Regional WWTP	2.49	0.63	0.401	64%
NC0023841	City of Durham	North Durham WRF	2.49	20.00	9.779	49%
Note: All dischargers are in the Neuse River basin.						

Tar-Pamlico & Neuse Estuary Strategies

- Developed strategies/TMDLs/ rules
- Rules fully implemented
- Substantial progress by sources
- Still no TN reductions at the estuary
 - Unidentified sources?
- Adaptive stage reassess

Jordan and Falls Lake Strategies

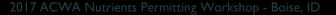
- NMS implementation underway
- Additional implementation delayed by legislative action – further study and reconsideration

Why a Watershed Approach?

- Watershed-specific strategy
- Stakeholder participation better results, less chance of litigation
- All sources share responsibility for contributions
- Like sources all subject to same requirements on the same schedule fair and equitable
- Greater efficiencies in permitting
- Consistent with the basin-wide approach to water quality management and permitting

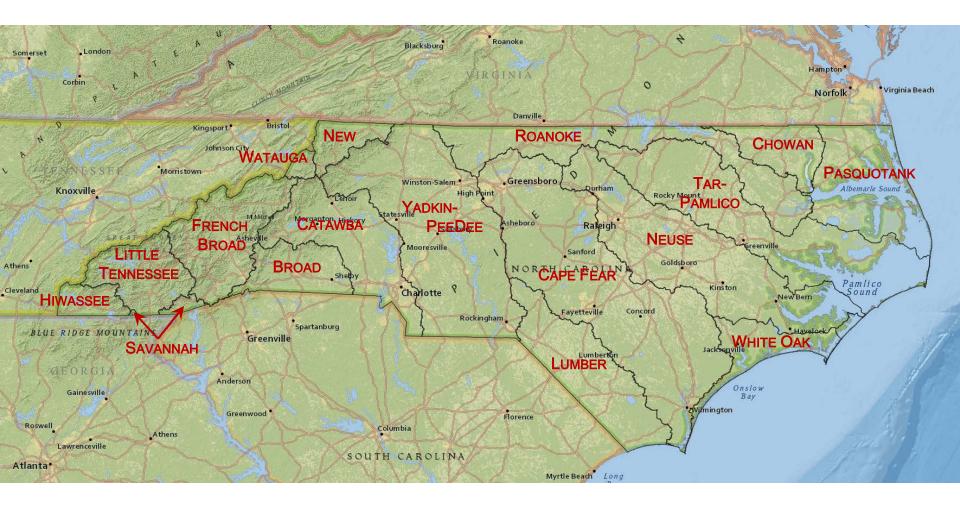
Some Downsides

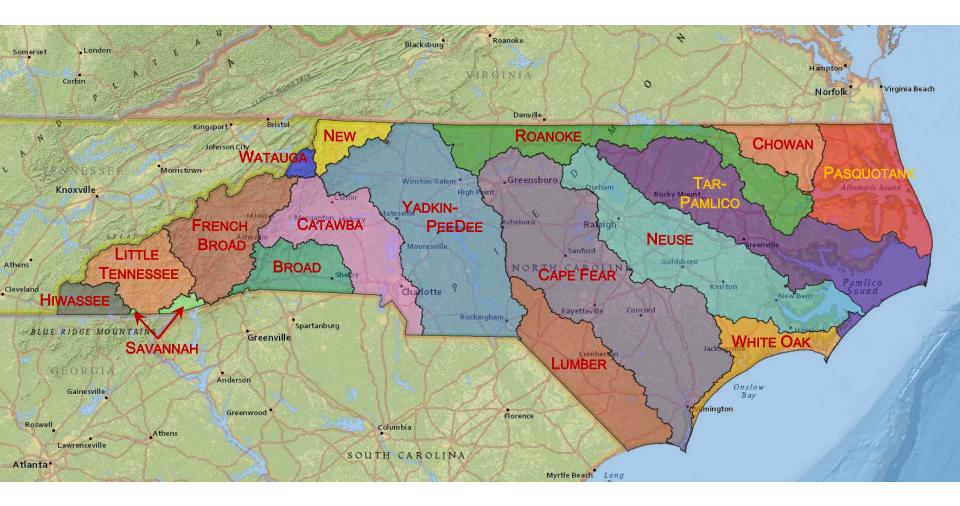
- Reactive approach strategies are developed for impaired waters
- Resource-intensive
- Multi-year process
- Uncertain 'shelf life'
- Legislature has added to NSW requirements



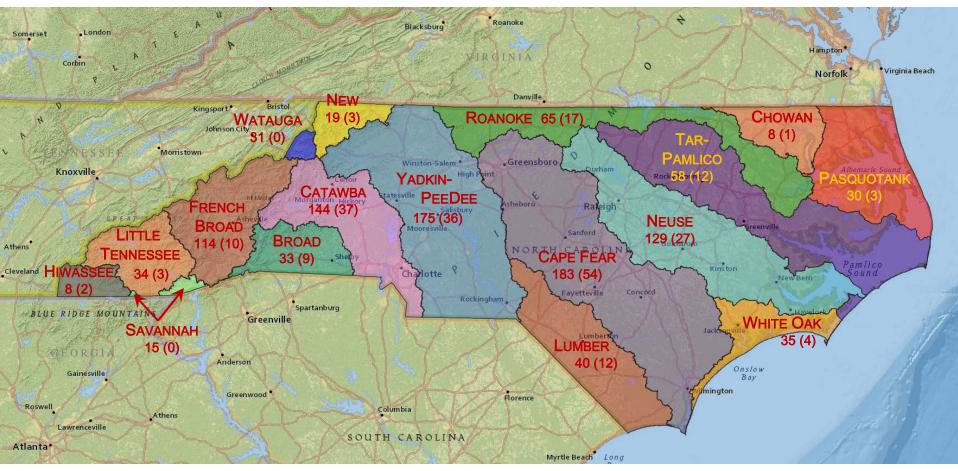
Questions?

Mike Templeton NCDENR/ DWR 919.807.6402 mike.templeton@ncdenr.gov


Public website: http://portal.ncdenr.org/web/wq



NC River Basins



NC River Basins

NPDES WW Permits by River Basin

Permit Counts: Totals (Majors) State Count (9/15/17): 1,121 (230)

2017 ACWA Nutrients Permitting Workshop - Boise, ID

Related Efforts

- Per 2005 NCIP, DWQ (now DWR) proposed threshold approach to prevent nutrient impacts; regulated community objected (too much \$\$\$, given the uncertainties)
- Sponsored a Nutrient Forum to hear expert opinion on best approach to nutrient controls: consensus recommendation was to continue with <u>waterbody-</u> <u>specific, watershed-based approach</u>
- NC does not have NNC but committed to further efforts in 2014 NCDP

Pamlico River, Mid-1980s

Neuse Estuary, Summer 1995

