Nutrient TMDLs and Permitting for Small Towns

Are all facilities to be treated equally?

ACWA/EPA Nutrients Permitting Workshop November 7, 2018

Agenda

- Background/Issues
- Ideas on TMDLs and Small Towns
- Practical Examples of TMDL Implementation
- Discussion

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of their respective employers

Background/Issues

• Discussion raised in Boise last December

- Increasing pressure to adopt Numeric Nutrient Criteria (NNC)
 - This may disproportionately affect POTWs, particularly small POTWs
- The majority of POTWs serve a population (e.g. <3000) where construction and O&M of nutrient reduction technologies may be unaffordable
 - Large number of dischargers, small fraction of the permitted discharge flow
- Nutrient reduction strategies remain a high priority for ACWA, states, EPA, environmental NGOs, and municipalities
- Are variances for perhaps half or more of POTWs a reasonable solution?
- How can the NPDES program best accommodate nutrient reduction?
- The small group that brought up issue in Boise has met informally
 - Debated the issue a little more/kicked around some ideas
 - Discussed at Columbus, OH Nutrient Permitting meeting June, 2018

Spoiler Alert!

- Are all facilities to be treated equally?
 - No!!
 - Nothing requires TMDLs to treat all facilities equally/proportionately
 - WLA can be sliced up in a variety of ways
 - Watershed permitting
 - Technology based WLAs
 - Load-based permits vs concentration-based permits
 - Declining population may equal declining load, but not declining concn.
 - Trading
 - Combinations of above
 - TBD
- But first a little context

Large and Small Communities

7% of US Population Lives in 2/3 of our Communities

Large and Small POTWs

Large and Small Communities

Large and Small POTWs

Based on ICIS Data

Large and Small POTWs

Income and Small Communities

Costs and Small Communities

Costs and Small Communities

FWPCA (inflation adjusted) 12

CBO Data – Capital vs O&M

Federal, state and local government spending on water and wastewater utilities, 1956 - 2014

Graphed by the Environmental Finance Center at the University of North Carolina, Chapel Hill. Source: Congressional Budget Office supplemental data for the *Public Spending on Transportation and Water Infrastructure, 1956 to 2014* report (March 2015). Displays public spending on supply systems for distributing potable water as well as wastewater and sewage treatment systems and plants. Real spending is shown after adjusting nominal spending to their 2014 dollar equivalent using infrastructure-specific price indexes. EFC – Chapel Hill

Rural/Metro Demographics

2/3 experiencing population loss

- Population loss (1,351 counties)
- Population growth below 5 percent (487 counties)
- Population growth, 5 percent or higher (138 counties)
- Metro areas (1,166 counties)
- Urbanized areas

EFC Forecast Tool - Input

E	5·∂·∓	Copy of Kansas To										
F	le Home Insert Page Layout Formulas Data Re	view View E	ESRI MAPS	Acroba								
drinkyears \checkmark : \times \checkmark f_x 20												
	Α	В	С	D								
1	Model Inputs											
2	Community	aaa										
3	Current Average Household Monthly Drinking Water Bill (\$)	65.90										
4	Current Annual Growth Rate in Drinking Water Bills*	2%										
5	Current Average Household Monthly Wastewater Bill (\$)	61.53										
6	Current Annual Growth Rate in Wastewater Bills*	2%										
7												
8	Planned Expenditure on Drinking Water Infrastructure	\$0.00										
9	Number of Years that the Infrastructure Will be Financed	20										
10	Planned Expenditure on Wastewater Infrastructure	\$0.00										
11	Number of Years that the Infrastructure Will be Financed	20										
12												
13	Annual Interest Rate											
14	Use Default Rate?	Yes										
15	If not, Enter Annual Interest Rate for Financing											
16												
17		Run Model										
18												
19	* - Note: The current annual growth rate in bills should											
20	incorporate all projected cost increases											
21	EXCEPT for those associated with the debt											
22	payments on infrastructure.											
22												

EFC Tool - Output

E 5-∂-∓			Co	py of Kansas ⁻	Tool ver 1.7_a	aa.xlsm - Ex	cel				Tate, I	Michael	五 —	Ø
File Home Insert Page Layout Formulas	Data Rev	view View	ESRI MA	Acro	bat Q⊺	ell me what y	you want to d	o						Ŕ
AF33 👻 : 🗙 🗸 .	fx													
A	B	С	D	E	F	G	н		1	К	I I	М	N	0
Model Outputs - Wastewate			0	-	•	J			,	K	L			
					1	Wastewa	ater Sust	ainabilit	v Proiect	tions				
Community	aaa							annaishne	,				-	
Community Population (2016)	2,887		5 140											
Increase in Average Monthly Wastewater Bill	\$0.00	+00	120											
Probability that Monthly Wastewater Bill Exceeds 2.0% of Median Household Income												_		
Exceeds 2.0% of Median Household Income	0.8366	4	100											
Sustainability Risk	High		80											
					\sim									
Current MHI	\$ 49,206	2 4 5	<u>4</u> 60											
Curent Wastewater Bill	\$ 61.53													
Projected Average Wastewater Bill	\$ 61.53	t	40											
Drinking Water Outputs Ne			20											
Drinking Water Outputs Net	w Model													
Note: The graph shows the typical sustainable	threshold													
for the community (blue line), forecast into the	future,		2009 ,	2012 2013	2015 2017	2019 2021	2023 2025 .	2027 2029 .	2032 2033	2035 2037 .	2039 2042 .	2043 2045	2047	
along with a range of estimates developed in a														
statistical model. It also shows the projected w	astewater				Range of Est	timates	Afforda	bility Indicato	or —	Projected Wa	stewater Bill			
bills using the inputs you provided.														
Projections	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Median Household Income	49,206	49,301	49,303	49,263	49,205	49,140	49,072	49,004	48,936	48,868	48,802	48,802	48,788	
Monthly Wastewater Bill	61.53	62.76	64.02	65.30	66.60	67.93	69.29	70.68	72.09	73.53	75.00	76.50	78.03	
%MHI	1.5%	1.5%	1.6%	1.6%	1.6%	1.7%	1.7%	1.7%	1.8%	1.8%	1.8%	1.9%	1.9%	
4														
	/ater Outputs	Wastewate	r Outputs	÷			: •							
eady	attrioutputs		. Suchard											

16

Some Comments From C-Bus

- Idea of *de minis* dischargers
 - For instance, OH does not address nutrients for dischargers with <100,000 gpd design
- Issues vary across states and Regions
 - Need to make geographic/geopolitical allowances
- Quite a bit of support for a combo of Options 4 and 5
 - Technology-based approach for major POTWs; or
 - Tiered-technology for small POTWs with TBELs or WQBELs for majors
 - Longterm Nutrient Reduction Plans (LNRPs)
- Like the idea of tiered tech levels
- Concern about making any system spend money on meeting a techbased limit if NNC were coming in the future

Some Comments From C-Bus

- Concern that NNC were not in the foreseeable future, so need to do something else to spur reduction
- As much as it may present bad "optics" variance may be needed
- Do not like narrative translators
- Not all small POTWs need relief
 - If they do not, should not be let off the hook
- Need to allow for site-specific implementation in sensitive watersheds
- Is there a possibility for a nationwide variance, or at least a framework?
- Probably need more discussion on when it is best or most appropriate to use UAA vs Site Specific Criteria vs Variance.
- Bottom line small communities are an important issue. Keep working!

Modern Era Non-Point Nutrient Pollution

"It's positively disgraceful. Just look at the way he's fertilizing. Has he no respect for tradition?!"

19

Implementing Nutrient Reduction at Small Towns

Kansas Approaches

November 7, 2018

Kansas Department of Health and Environment

Small Town Nutrient Reduction

Kansas Wastewater Demographics

- 85% of Kansas Towns have population under 3000
- Most of those Towns rely on gravity-fed facultative lagoons for wastewater treatment
- Between 2010 2016, only 37 towns with populations between 300 and 3000 saw growth
- Nutrient Impairments (TP, NH3, NO3) closely associated with mechanical plants
- Nitrogen handled as concentrations (numeric criteria)
- Phosphorus handled as mass (narrative criteria)
- 130 mechanical plants in Kansas average 3 MGD; focus of nutrient TMDLs
- 322 lagoon systems with average design flow of 0.12 MGD; what to do?

nsas Small Town Nutrient Reduction

Phosphorus is handled through TMDLs

- Typical Small Town Handles Wastewater with Lagoons
 - 120 to 150 days of retention time
 - 3, 4 or 5 cells
 - Default is 2 mg/I TP (tech-based), but Mass is the limit
 - Population Determines Wastewater Volume (Little to No Industry)
 - Wasteload Allocation based on Design Flow X Default [TP]
 - Design Flows typically >> Actual discharge
 - Declining population
 - High ET, Low Precipitation during Summer Baseflow
 - Reuse gaining Momentum
 - Thus, Town remains within its WLA, without Capital Outlay for additional Treatment

Small Town Nutrient Reduction

Ammonia is handled through MDVs

- Most Small Towns with Lagoons can Comply with NH3 Limits Based on 2013 Criteria
 - 120 to 150 days of retention time allows for adequate biological uptake of NH3 and NO3
 - Winters often problematic with compliance for some towns
 - Population declines also erode revenue stream
 - Little Financial Capability to invest or maintain BNR (Nitrify Denitrify)
 - Multi Discharger Variance in place for towns with population below 3000
 - Highest Attainable Criteria = Most likely cap on ammonia output = historic 99th percentile
 - · Pollution Minimization Plans holds the line on rises in ammonia output
 - Musts Restrictions: Cert. Op, Adequate Maintenance, <u>No Industrial Wastewater</u>
 - Consider Operational Conditions: Irrigation, Controlled Discharges, Routine Desludging
 - Encouraged Construction Improvements: Improved Piping, Additional Cells

Small Town Nutrient Reduction

Thank you/Questions

Tom Stiles Assistant Director, BOW <u>Tom.Stiles@ks.gov</u> www.kdheks.gov/water/www.html

Kansas Department of Health and Environment

Small Town Nutrient Reduction

We've Shown Our Ideas – Yours?

- 1. Are states using TMDLs in other ways to deal with nutrient permitting?
 - If so, differentiating between "Small" and "Large" POTWs?
- 2. What about industry?
 - How is industry nutrient permitting handled?
- 3. What about TMDLs with WLAs more stringent than treatment technology can achieve?
 - Particularly for small facilities?

Small Town Nutrient Reduction

Lagoon Study Data - KDHE

Small Town Nutrient Reduction

Lagoon Study Data - KDHE

