

Research Update: Nutrient Management and Control

Daniel J. Murray, Jr., P.E., BCEE
Senior Environmental Engineer
U.S. EPA, Office of Research and Development
National Risk Management Research Laboratory
Water Systems Division
Cincinnati, Ohio

Presentation Outline

- U.S. EPA, ORD Overview
- Research Plans Safe and Sustainable Water Program
- Project Examples:
 - Green Infrastructure Performance Monitoring
 - LCA of Nutrient Control Technologies
 - Nutrient Control Design Manual
- Accessing Research Results and Tools

ORD Organizational Chart

Our Mission

Provide the science, technical support, technology, and tools to inform EPA's mission to protect public health and the environment

How ORD Develops its Research Programs

National Research Programs

Conduct
Research and
Develop
Products

Labs/Centers

Deliver
Products to
Clients

Decision Inputs, Evaluation and Feedback

EPA Programs and Regions

EPA Strategic Strategic Plan Congressional Mandates

States, Tribes, E
Local governments
Other stakeholders

External
Science
rs Advisors

Safe and Sustainable Water Resources

STRATEGIC RESEARCH ACTION PLAN 2016-2019

SSWR Research Topics and Projects

- Watershed Sustainability: ambient water quality criteria; energy and mineral resources; scalable tools and methods for integrated assessment and management; national water quality benefits.
- Nutrients: thresholds and targets for appropriate nutrient levels; management tools and practices; metrics; harmful algal blooms.
- Water Systems: current and transformative systems; emerging contaminants in drinking water and sources; technology advances.
- Green Infrastructure: models and tools; community benefits; linkage to aquifer storage and recovery.

USEPA Nutrients Research in Cincinnati: Monitoring GI Performance at sites in the Mill Creek Watershed

Sites, periods of monitoring data collection:

Lick Run - St. Francis Apartments Rain Garden, 2012-2015 **Congress Run** - Stream restoration and daylighting, 2016 - present

- Hydrology monitoring by Inter-Agency Agreements with USGS.
- Base-flow sampling (monthly) and storm event sampling (8-10 events per year).
- Flow-proportional and timed sample collection (paired ISCOs), minimum of 8 sample times per location and storm event.
- GCLAS used to estimate storm event load totals.
- Data being used to calibrate and validate GIFMod rain garden module.

Lick Run; Rain Garden (Project Groundwork).

Congress Run; Daylighting and Restoration

Nutrients and methods (by Lachat FIA):

Total N AWWA 4500 N $_{\rm org}$ D / USEPA 353.2 Total P AWWA 4500-P B.5 / USEPA 365.3,

 $\begin{array}{ll} \mathsf{DRP} & \mathsf{USEPA}\ 365.1 \\ \mathsf{NO_2}\text{-}\mathsf{NO_3} & \mathsf{USEPA}\ 353.2 \\ \mathsf{NH_4} & \mathsf{USEPA}\ 350.1 \end{array}$

Also: TOC, DOC, TSS, VSS, SSC, COD, Turbidity, pH, Temp., DO, SC, ORP, metals, anions, e. coli, and total coliforms for each sampled time and location at both field sites.

LCA of 5-Level Nutrient Removal Treatment Train

Level	Total Nitrogen, mg/l	Total Phosphorus, mg/l
1	*	*
2	8	1
3	4-8	0.1-0.3
4	3	0.1
5	<2	<0.02

Level	Type of Biological Treatment	Phosphorus Precipitation	Fermenter	Sand Filter	Other
1	Plug Flow Activated Sludge				
2	Anaerobic/ Anoxic/Oxic				
2	Activated Sludge, 3- Sludge System	\checkmark			
3	5-Stage Bardenpho	\checkmark	$\sqrt{}$	$\sqrt{}$	
3	University of Cape Town Process, Modified	V	V	\checkmark	
4	5-stage Bardenpho	\checkmark	$\sqrt{}$		Denitrification Filter (100%)
4	4-stage Bardenpho Membrane Bioreactor	\checkmark			
5	5-Stage Bardenpho	V	V	√	Denitrification Filter (10%) Ultrafiltration And Reverse Osmosis (90%)
5	5-stage Bardenpho Membrane Bioreactor	V	$\sqrt{}$		Reverse Osmosis (85%)

Cumulative Energy Demand

Annual Life Cycle Costs

History of Nutrient Control Design Guidance at ORD

- Nitrogen Control
 - Process Design Manual for Nitrogen Control 1975
 - Manual Nitrogen Control 1993
- Phosphorus Control
 - Process Design Manual for Phosphorus Removal 1971
 - Process Design Manual for Phosphorus Removal 1976
 - Design Manual Phosphorus Removal 1987
 - Handbook Retrofitting POTWs for Phosphorus Removal in the Chesapeake Bay Drainage Basin - 1987

ORD's Latest Nutrient Control Technology Design Guidance

- January 2009 Nutrient Control Design Manual: State of Technology Review Report (EPA/600/R-09/012)
- August 2010 Nutrient Control Design Manual (EPA/600/R-10/100)

Nutrient Control Design Manual Contents

- Need for Nutrient Control
- Principles
 - Phosphorus Removal by Chemical Addition
 - Biological Nitrogen Removal
 - Biological Phosphorus Removal
- Technology Overview
 - Nitrogen Removal
 - Phosphorus Removal
 - Combined N/P Removal
 - Effluent Filtration

Nutrient Control Design Manual Contents (cont'd)

- Design
 - Objectives
 - Process Selection
 - Design Approaches
 - Phosphorus Removal by Chemical Addition
 - Biological Nutrient Removal
 - Effluent Filtration
- Operation and Optimization
- Instrumentation and Control
- Sustainable Nutrient Recovery and Reuse

EPA/600/R-10/100

Office of Research and Development National Risk Management Research Laboratory

EPA/600/R-09/012

U.S. EPA's Science Inventory

https://cfpub.epa.gov/si/

U.S. EPA's Online Publication Warehouse

https://www.epa.gov/nscep

