Cold Water Refuges and TMDLs - rethinking "fishable" for large rivers and climate change

Paul J. Pickett, P.E. WA State Department of Ecology Environmental Assessment Program

Association of Clean Water Administrators Annual Meeting August 16, 2016

What is a CWR?

- Cold water tributaries, including headwaters
- Channel features: pools, hyporheic outflow
- Floodplain features: side-channels, gravel bars
- Groundwater springs, springbrooks, upwelling
- Microclimates from shading, woody debris, overhangs
- Closely related: temporal thermal regimes cool pulses)

Why is this important?

- Over 40 studies published since 1990s
- Identified as critical survival strategy in large, warm rivers
 - Columbia, Snake, Willamette, Grande Ronde, John Day
 - Create resilience by providing refuges and "stepping stones"
- Important adaptation strategy for climate change
 - Modeling shows increasing water temperatures throughout the state

Large rivers raise troubling questions

- Pend Oreille River Temperature TMDL
 - Major tributary of the Columbia River
 - Few dischargers, run-of-river hydroelectric dams
 - Natural temperatures high wide river w/ lake surface outflow
 - Bull Trout study showed fish survived in cool tribs and springs
 - Little that dams can do directly to reduce temperatures
 - Reducing daily maximum temperatures in the middle of the river does not support fish

Large rivers raise troubling questions

- Yakima River Water Quality Study
 - Highly regulated river
 - 5 USBR dams for irrigation
 - Semi-arid climate, wide valley

- August water temperatures above 27°C at the mouth
- "Reaches Study" identified CWRs created by floodplain reconnection
 - Snowmelt high water charges shallow groundwater
 - Cool springbrooks and pockets support fish
- Fisheries restoration focus on CWRs & cold water pulses
- Lower Yakima survey
 identified cool water pockets

Other CWR studies on large rivers

- This issue has been identified in many other PNW studies
 - o Columbia and Snake Rivers
 - Salmon use cooler tributaries to hold in during hot spells
 - Fishing pressure on CWRs can be a challenge
 - Willamette River CWRs as "stepping stones"
 - Off-channel areas and deep pools
 - o John Day and Grand Ronde Rivers
 - "Cold water patches": tributaries, side channels, alcoves, lateral seeps, floodplain springbrooks

Climate change raises troubling questions

- SF Nooksack River Temperature TMDL and CC Pilot
 - Small river, wide and shallow in valley
 - Rain/snow hydrologic regime no flow regulation
 - Pilot study evaluated temperature compliance under future climate change scenarios
 - Mainstem temperature above salmon lethal threshold by later in this century
 - Cold Water Refuges (CWRs) needed for resiliency

Challenges with CWRs and CWA

- WA State Standards
 - o Daily maximum midstream is first line of defense
 - o CWR monitoring cannot be used for assessment
 - Perceived as a loophole?
 - > Thermal regime not addressed
 - e.g windows of cool weather, daily minimums
 - o CWR addressed in Tier 3 Anti-degradation
 - But process unclear, appears to be cumbersome

Challenges with CWA, CWRs, and ESA

- WA WQ standards: NOAA and USFWS BiOp (2008)
 - Raised concerns with large rivers with high temperature criteria (e.g. 21 °C)
 - Identified TMDL as process to address natural conditions for temperature in large rivers
- OR WQS CWR: NOAA Fisheries ESA Jeopardy call on narrative criteria due to lack of implementation
 - Triggered EPA studies of CWRs in Columbia and Willamette

Should we address CWRs in TMDLs... and how to do it?

- Revising standards for CWR is complex and controversial
- Easier path: address CWRs in TMDL implementation
- Two elements required:
 - o Technical study
 - o Implementation methods

Several EPA studies

- d
- Analysis of CWRs on Columbia and Willamette Rivers in response to OR WQS ESA Jeopardy
- RARE study of headwater tributaries as CWRs based on USFW NorWeST temperature data base
 - o Includes climate impacts and restored conditions
 - Comparison of results to temperature TMDLs
- Proposed RARE study of FLIR processing
 - Digital Image Analysis to identify CWRs from IR imaging

How do you measure CWR?

- Thermal Infrared remote sensing
 - o TIR, also called FLIR
 - Usually acquired from aerial platforms e.g. aircraft/satellites

- Emerging technology for FLIR on an UAV ("drone")
- Fløating or wading surveys with thermistors
- Fiber optic thermistor cable linear sensors

Examples of surveys for existing CWRs

- Lower Yakima River (Benton Conservation District)
 - Continuous temperature collected up/downstream
 - Three boats collecting continuous temperature and GPS positions midstream and on left and right banks
- Stillaguamish River (Snohomish County)
 - o TIR flights
 - o Thermal profiling from a drifting raft

CWRs and TMDL implementation

- Locating existing CWRs heavily studied, but little research has been done on *identifying sites for restoration*
 - Methodology needs to be developed to identify floodplain and riparian restoration opportunities
 - Could be done with GIS analysis of geomorphology
- Some examples of current restoration approaches:
 - 6 Floodplain and riparian restoration
 - o Enhancement at mouths of cooler tributaries
 - Restoration of groundwater inflows and flow regimes
 - Recharge enhancement (off-season infiltration)
- CWRs in TMDL Implementation plans
 - o Explore all possibilities to reduce daily maximum
 - temperatures averaged across the channel
 - CWRs as supplemental goal
 to improve designated use of
 cold water aquatic life

Benefits of addressing CWRs in the TMDL process

- Supports CWA to protect cold-water aquatic life
- Aligns with ESA and other fishery restoration needs
- Some technical methodologies well established, others advancing rapidly
- TMDL implementation approaches have been developed and proposed for EPA approval
 - o SF Nooksack and Pend Oreille Rivers

Complications and implications

- Uncertainty regarding how CWRs factor into in federal ESA decisions for EPA CWA actions
- CWRs are linked to the issue of natural conditions, which has been a bone of legal contention
- Addressing the impact of water use on ground water inflows and CWRs can be difficult (water rights issues)
- Although addressing CWRs through TMDLs may be the "right thing to do" in some situations, it adds complexity
 - Legal decisions may shift
 emphasis more on
 quantity of TMDLs ,
 and less on quality

Cold Water Refuges and TMDLs Questions?

