Challenges with the Secondary Use of Multi-Source Water-Quality Data in the United States

Lori Sprague U.S. Geological Survey National Water-Quality Program National Water-Quality Assessment Project Surface Water Trend Studies Coordinator

USGS National Water-Quality Assessment (NAWQA) Project

1. Status—What is the current quality of the Nation's surface water and groundwater?

2. Trends—Is water quality getting better or worse?

3. Understanding—What are the natural and human factors that control water quality?

Survey of multi-source data

- 25 million nutrient records from 322,000 sites and 488 organizations
- NWIS, STORET, and other Federal, State, and local databases
 - 19 Federal agencies
 - 6 regional (multi-State) organizations
 - 100 State water, natural resources, or environmental protection agencies
 - 130 tribal organizations
 - 108 County or subcounty organizations
 - 24 academic organizations
 - 17 non-governmental organizations
 - 34 volunteer organizations
 - 50 private organizations

Survey of nutrient data

These issues occur with secondary use of data

- Primary use the use of data for the original intent determined by the organization that collected the data
- Secondary use the use of the same data for other purposes

Individual monitoring organizations understand their own data very well

 Issues arise when their data are combined with data from other organizations using different reporting methods

Key metadata elements (result level)

Metadata needed to unambiguously identify a result value

- Parameter name
- Sample fraction (filtration status)
- Chemical form (molecular or elemental)
- Numerical value
- Units
- Remark codes

Parameter name

10 most commonly reported nutrient parameters

- Ammonia
- Kjeldahl nitrogen (ammonia and organic nitrogen)
- Nitrite
- Nitrate
- Nitrite plus nitrate
- Nitrogen (mixed forms, including nitrite, nitrate, ammonia, and organic nitrogen)
- Organic nitrogen
- Organic phosphorus
- Orthophosphate
- Phosphorus (mixed forms, including orthophosphate, polyphosphates, and organic phosphorus)

Parameter name

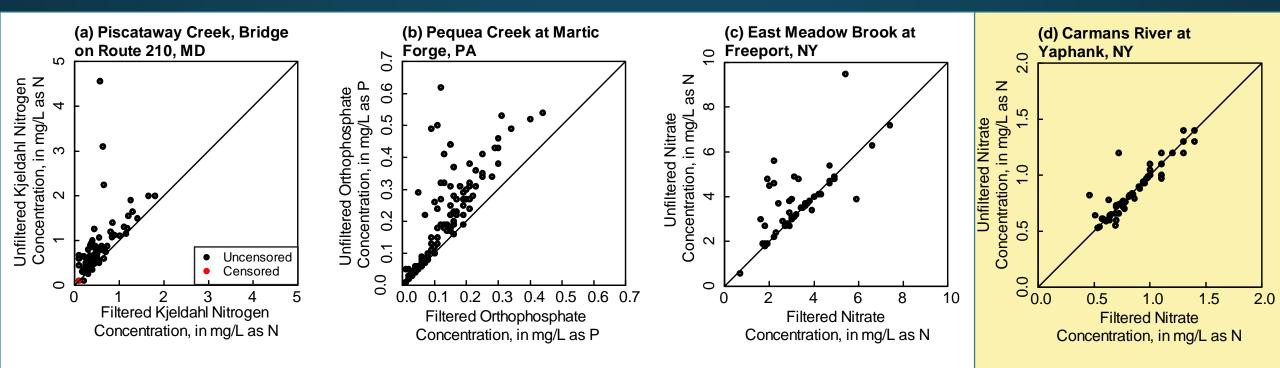
• 1,046 unique variations on those 10 parameter names

- 115 could not be unambiguously mapped
- Mapping had to be done manually for the remaining 931
- Greatest number of unique variations
 - Orthophosphate -- 147
 - Ammonia -- 141
 - Phosphorus, mixed form -- 119

Parameter name

Reported Parameter Name	Harmonized Parameter Name
Inorganic nitrogen, calculated as NH3+NO2+NO3	Inorganic Nitrogen NH3+NO2+NO3
Inorganic nitrogen (nitrate and nitrite) as N	Nitrite + Nitrate
Inorganic Nitrogen	?
Nitrogen, Inorganic, Total	?
Nitrogen,Inorganic Nitrogen,inorganic,total(ug/LasN)	?
Nitrogen, Inorganic Nitrogen, inorganicas N	?
NitrogenInorganicTotal InorganicNitrogen	?
NitrogenInorganicTotal TotalInorganicNitrogen,asN	?

Filtration Status


Filtration is the physical process used to separate the particulate and aqueous fractions of a water sample

- In a single stream sample, it often is possible to determine both unfiltered and filtered variations of the same chemical
 - For example, total nitrogen and total dissolved nitrogen
 - The resulting values may be very different from one another
 - Not always tied to the laboratory method

Filtration Status

Filtration Status/Parameter Name Use of the word "TOTAL"

Used two ways

1. summation of multiple species (NH₃ + Organic N = Kjeldahl N)

2. an unfiltered sample

Unambiguous

Total Kjeldahl Nitrogen, Unfiltered

Total Kjeldahl Nitrogen, Filtered

Dissolved Total Kjeldahl Nitrogen

Ambiguous

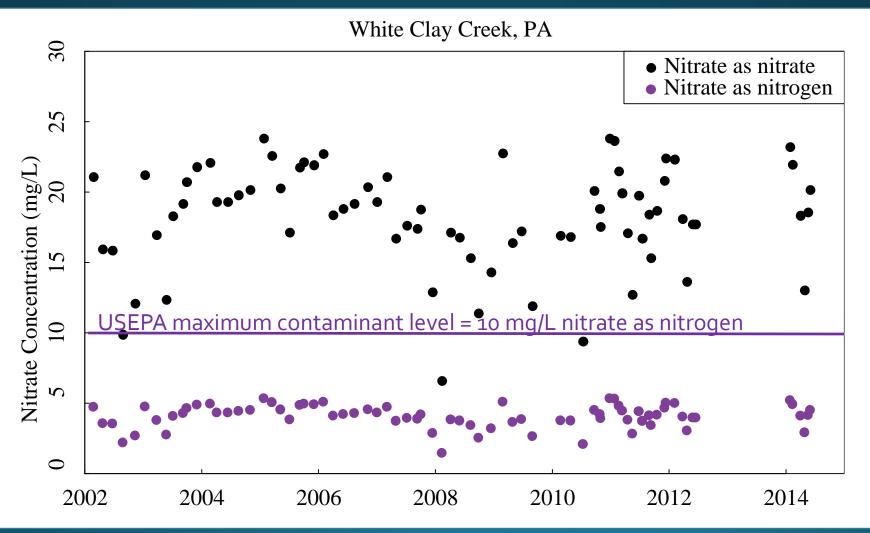
Total Kjeldahl Nitrogen

Kjeldahl Nitrogen

Chemical Form

Some water-quality results can be reported in two chemical forms molecular or elemental

• For example, the same nitrate value can be reported two ways:


- 1. "as nitrate" (the molecular form, which includes the full set of nitrogen and oxygen elements in the nitrate molecule)
- 2. "as nitrogen" (the elemental form, with includes just the nitrogen element)

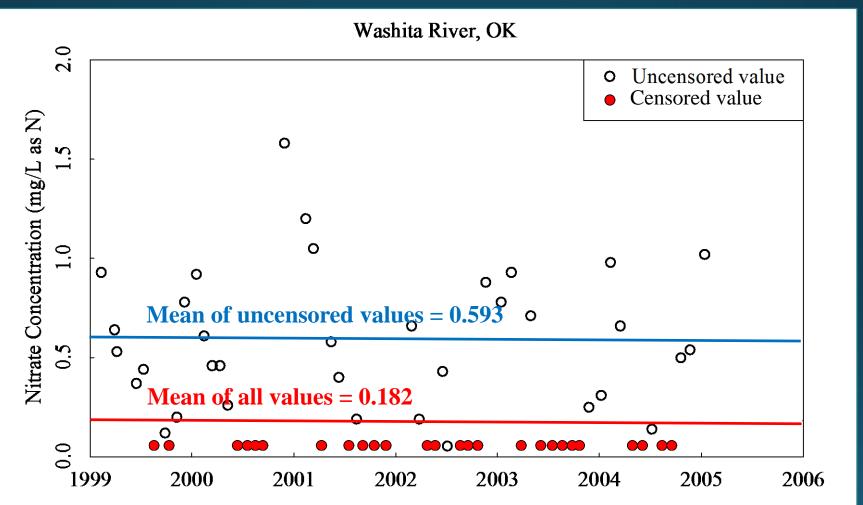
The two differ by a factor of 4.5

Similar reporting options for ammonia, nitrite, and orthophosphate

Chemical Form

Units

- Many data values were reported without units (mg/L, μ g/L, etc.)
- Other values were reported with units that were clearly inappropriate
 - For example, nephelometric turbidity units (NTU) with a parameter like ammonia



Remark Codes

- 587 unique remark codes
 - Many of these were not defined or were ambiguously defined
 - Not stored consistently (remark field versus comment field)
- 63 unique remark codes indicated laboratory censoring
 - Had to be manually identified
- Mis-identification of censored data can lead to substantial bias in data analyses
- Of the 488 sources surveyed, 118 did not provide any records at all with censored remark codes

Remark Codes

Zero, negative, and missing values

• Zero values

- Cannot have a nutrient concentration of zero
- Often used to represent laboratory censoring
- Negative values
 - Laboratory censoring?
- Missing values with censored remark code
 - Was the sample not analyzed?
 - Laboratory censoring?

Count of affected records

• Of the 25,125,379 original records, 14,453,492 had missing or ambiguous information for one or more of the key metadata elements

Starting records	Affected records					
	Parameter name	Filtration status	Chemical form	Units	Remark codes	Zero, negative, missing
25,125,379	3,557,821	11,946,455	4,265,615	1,311,096	124,523	636,454

Count of affected records

 These counts do not include the unknown number of censored records that may have been deliberately withheld

Starting records		Affected records					
	Parameter name	Filtration status	Chemical form	Units	Remark codes	Zero, negative, missing	
25,125,379	3,557,821	11,946,455	4,265,615	1,311,096	124,523	636,454	

Why does this all matter?

- Combining water-quality data from multiple sources can help counterbalance diminishing resources for stream monitoring
 - It can also lead to important regional and national insights that would not otherwise be possible
- Currently, metadata harmonization to make use of these multisource data is time consuming, expensive, and inexact
- Different data users may make different assumptions about the same ambiguous data, potentially resulting in different conclusions about important environmental issues

All nutrient records (ambiguous + unambiguous) from all sources (25,125,379)

Unambiguous nutrient records from the U.S. Geological Survey (6,560,836)

Unambiguous nutrient records from all sources (10,671,887)

Cost to collect a stream-quality sample

- Salary, travel, supplies, equipment, laboratory analysis, administrative support, database support, and quality control and quality assurance management costs
- Published estimates ranged from \$2,179 to \$6,148 (adjusted for inflation)¹
 - Average \$3,788

¹Betanzo et al. (2015), Horowitz (2013), Herrera Environmental Consultants and Aspect Consulting (2010)

• 14,453,492 affected RECORDS

- With multiple affected records in a given sample, that translates to 3,928,774 unique SAMPLES
- Estimated 20% of the samples are duplicated
 - 3,143,019 unique samples
- 3,143,019 x \$3,788 = **\$12** billion
 - Range= \$6.8 billion to 19 billion
- Value of unaffected records = \$8.2 billion

\$12 billion represents a substantial collective investment by monitoring organizations in the United States

- This investment can be protected by implementing standardized metadata
- Standardized metadata can also help increase the use and value of legacy and future data beyond their original intent

Challenges of implementing standardized metadata

The full cost to implement standardized metadata is unknown, but will not be trivial

- Could require changes to local data processing, data bases, and web interfaces
- Funding is not readily available
- Metadata issues may be easier to address in recent and future data than in legacy data

Progress is underway

1. Water-Quality Portal

- Developed by USEPA and USGS to be a single point of access for water quality data
- Uses certain standardized metadata elements formatted according to the Water Quality Exchange (WQX) Outbound XML schema
- 2. Water-Quality eXchange (WQX) Nutrient Best Practices Guide
 - Recently created to promote consistency when submitting data through WQX
 - Produced through a collaborative effort between USEPA, USGS, and several State monitoring organizations
- 3. National Water-Quality Monitoring Council has published detailed metadata recommendations

QUESTIONS?

lsprague@usgs.gov

Publication Water Research (DOI number 10.1016/j.watres.2016.12.024) <u>Acknowledgments</u> Gretchen Oelsner and Denise Argue