Regulating Nutrients Through "Control Regulations" A Longtime Colorado Approach October 26, 2021

Joni Nuttle, Aimee Konowal and Meg Parish Colorado Water Quality Control Division

Introduction to Control Regulations in Colorado: What they are, where they are

History

National Pollutant Discharge Elimination System (NPDES) COLORADO WATER QUALITY CONTROL ACT (1973)

Restant and reproduced by the Colonalis Department of Public Health and Ministered August 2013. PLRAME NOTE: This is an unofficial way of this statute. The official way is publicled as the Colonalis Aufund Statutes under the supervision and direction of the Contenties on Legal Networks.

Colorado Discharge Permit System (CDPS)

Legal Background: What are Colorado Control Regulations?

- Special authority given to state Water Quality Control Commission to establish "extra" regulations from those specifically required by the CWA to protect state waters
 - General authority "To describe prohibitions, standards, concentrations, and effluent limitations on the extent of specifically identified pollutants ... that any person may discharge into any specified class of state waters"
- Provides a framework for developing innovative approaches to complex water quality problems - even in the absence of standards

CWA Section 314 Lakes Program

- 1972 under the Federal Water Pollution Control Act
- Funded 1976-1995
- Restore and manage publicly owned lakes
- 1980s Diagnostic/Feasibility studies and restoration efforts
- Colorado Control Regulations

The site-specific nutrient control regulations

- Site-specific TMDL-like things adopted as regulations
- Applicable at the watershed scale
- Include specific mechanisms for control of point and nonpoint sources.
- Comprehensive approach to eutrophication
- Context: at the time adopted, no statewide nutrient criteria, standards, or tech-based limits
 - since then, Colorado has adopted state tech-based nutrient limits and current permittees within the control reg areas are excluded

4 Site-Specific Nutrient Control Regulations

3 Control Regulations in Denver Metro

The Science Behind the Control Regs

What is Eutrophication?

- Excessive growth of algae
- Nutrient enrichment
- Common outcome of development/ land use changes
- Mix of point and nonpoint sources
- Consequences
 - excessive algal growth
 - elevated pH
 - decreased dissolved oxygen

Commonalities of Control Regs

- General purpose is attainment of water quality standards
- Achieve or maintain a particular trophic status or level of productivity
- All control regulations defined a target condition that referred to a certain level of algae
- Regulate GROUNDWATER discharges as well as surface water

Silverthorne

City Market Dillon

and the second

Wildernest

Dillon Reservoir ?

9

Whole Foods Market

Sapphire Point Overlook

Reservoir

150

Frisco

Dillon Reservoir Intent and Goals

- Intent: Maintain trophic status at or below historical level (1982) that is consistent with existing uses
 - adopted 1984; amended 1987, 1996, 1997, 2001, 2003, 2007
 - TMAL based on loads observed in 1982 when conditions were determined acceptable
 - Target TP load of 10,162 lb/Year referenced to inflow of 212,000 AF,
 - revised to 8,350 lb/Year
 - TP standard set at 7.4 ug/L
 - Acceptable that higher inflows could yield higher TP loads under which in-lake TP could exceed 7.4 ug/L

How the Dillon Control Reg Works

- Summit Water Quality Committee (SWQC)
 - central role in implementation
- Lbs/year load allocations for point sources
 - new sources need to trade to get an allocation
- Concentration limits
 - 0.5 mg/L daily max (facilities >2000 gpd), 0.2 mg/L 30-d avg for new facilities
- Balance of the TMAL is for nonpoint
- Some trading is allowed

Kennedy Golf Course

DamRe

Cherry Creek Reservoir

Cherry

Creek

Reservoir

Cherry Creek Reservoir

Cherry Creek Intent and Goals

- Intent: Target trophic status allowed some degradation
 1982 used as base year
- Chlorophyll standard was "protective of the uses"
- Control Regulation originally adopted in 1985

Goals:

- TP standard = 0.035 mg/L (growing season average)
- Chlorophyll a standard = 15.0 ug/L
- Indexed future TP yields to 1982 base year
- At higher inflows TP loads and in-lake concentrations may be exceeded.
- Since 2010, only chlorophyll a standard = 18 ug/L
- Since 2010 concentration-based rather than load-based, so no TMAL, no WLAs

How the Cherry Creek Control Reg Works

- Cherry Creek Basin Water Quality Authority
 - established by statute
 - has a central, well-defined role in implementation
- TP Effluent limits wastewater facilities, industrial process wastewater sources, and developing [semi-urban] areas
 - 0.05 mg/L for a 30-d avg applied to most direct dischargers
 - 0.20 mg/L for DW facilities
- MS4 practice-based controls and approvals
 unlike Dillon, surrounded by suburbs
- Nonpoint source requirements

State Pat

Chastield

Trails Edge at Solstice | Shea Homes

c Gardens Chatfield²¹

121

tion and the second

Chatfield Intent and Goals

- Intent: Target trophic status allowed some degradation
 - 1982 used as base year
- Chlorophyll standard to maintain beneficial uses
- Control Regulation originally adopted in 1989
- Goals:
 - TP standard = 0.027 mg/L (growing season average)
 - Chlorophyll a standard = 17 ug/L
 - Indexed future TP yields to 1982 base year
 - TMAL 59,000 lb/Year based on hydrology
 - WLA = 7,533 lb/Year
 - Standards and TMAL revised in 2009, but allocations not yet revised

How the Chatfield Control Reg Works

- Chatfield Watershed Authority
 - central role in implementation and allocation efforts
 - scope of responsibility limited geographically
 - dischargers and land-use agencies
- Wastewater facilities and other process water must meet concentration limits and must possess load allocations
 - concentration limits are 1.0 mg/L as 30-day avg
 - new dischargers must try and find a trade
- Stormwater is excluded, even MS4s

BEAR CREEK LAKE PARK

Bear Creek Lake

Image Landsat / Copernicus

lomes

Bear Creek Lake Intent and Goals

- Intent: Current conditions (1982) considered not desirable, needed to improve trophic state
- Control Regulation originally adopted in 1992
- Goals
 - Narrative standard expressed in terms of trophic state
 - Reduce algal bloom severity/frequency
 - Shift from hypertrophic to mesotrophic/eutrophic
 - No TMAL, but WLA = 5,255 lb/Year
 - Numeric standards adopted 2010, revised 2015
 - TP=22.2; Chlorophyll a 12.2
 - Allowed exceedance frequency

How the Bear Creek Lake Control Reg Works

- Bear Creek Watershed Association
- TP Effluent Limits wastewater facilities, industrial process wastewater sources
- WWTFs 1.0 mg/L, whether direct discharge or discharge to groundwater.
- Does not include MS4 WLA
- Nonpoint source controls

Yes and Yes, But!

- Big picture
 - Definitely limited eutrophication/ maintained trophic status before TMDLs
 - Some control regulations more successful than others
 - Bear Creek Reservoir goals not attained
- Regs also moved the science about nutrients in Colorado lakes forward
 - 20-30 years before statewide nutrient criteria
 - Long-term data and efforts to inform nutrient criteria development
- Has authorized some pollution controls that would have been impossible without control regulation authority
 - Example construction stormwater controls for sites under 1 acre

The But....

- Implementation can take a lot of resources
 - 5 nutrient control regiments instead of 1
 - LOTS of coordination required for each permit with agencies, engineering
- Some parts of the regs are showing their age
 - Allocations may be out of date
 - Lack of consideration for stormwater in all but Cherry Creek
 - Relying on lysimeters for groundwater compliance
 - these rarely work in Colorado
- What if WWTPs can't go lower?
 - Stakeholders are interested in options for controlling internal loads, such as alum treatment

Additional Thoughts

- Control Regulations are not approved TMDLs
- TMDLs may still be needed
 - Bear Creek Reservoir and Cherry Creek Reservoir are on 303(d) List
 - TMDL for Bear Creek under development
- Colorado is developing statewide nutrient criteria
 - It is possible that stream nutrient standards could be drivers for future nutrient controls, not the control regulations
- Trading can be complicated
 - permitting logistics
 - environmental tradeoffs

Joni Nuttle, <u>joni.nuttle@state.co.us</u> Aimee Konowal, <u>aimee.konowal@state.co.us</u> Meg Parish, <u>meg.parish@state.co.us</u>

